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In orbital injection, the launch vehicle (LV) structure and the spacecraft are subjected to extreme dynamic
loads, in particular to vibroacoustic loads (from rocket engine thrust oscillations and aerodynamic loads), which may
cause spacecraft instrumentation malfunction and damage spacecraft light-weight thin-walled structures. This paper
is dedicated to the development of an approach to predicting dynamic loads on spacecraft in orbital injection by LVs
of various layouts under propulsion system thrust oscillations in active flight.

The paper presents an approach to predicting dynamic loads on spacecraft in orbital injection by LVs of
various layouts. The approach makes it possible to evaluate dynamic loads (spectral densities of vibration
accelerations) on spacecraft under propulsion system thrust oscillations acting on the liquid-propellant LV structure
in active flight. The approach includes a mathematical simulation of the spatial oscillations of the LV structure
according to its structural layout scheme and the experimental pre-determination of the spectral density of the rocket
engine power. The workability of the proposed approach in predicting the spacecraft dynamic loads is demonstrated
by the example of a computational analysis of the spectral densities of spacecraft oscillations in orbital injection by
LVs of various structural layouts.

It is shown that the approach allows one to predict, as early as at the initial LV design stage, the spacecraft
vibratory load parameters at different times of the LV first-stage liquid-propellant rocket engine operation
accounting for the rocket layout (with the spacecraft) and design features and using the vibroacoustic characteristics
of the liquid-propellant rocket engine (known from the results of its fire tests).
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