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In the tryout of liquid-propellant rocket engines (LPREs), the parameters that govern working processes in
the LPRE systems (the pressure, the flow velocity, the gas and liquid temperature, the turbopump speed, etc.)
exhibit low- and high-frequency oscillations. High-frequency oscillations in a combustion chamber, which are
potentially dangerous to the LPR operational reliability and integrity, are the least understood. The most
important tool in the study and development of measures aimed at their elimination in the flight of liquid-
propellant launch vehicles is a mathematical simulation of high-frequency processes in a combustion chamber.

This paper overviews recent publications and analyzes the state of the art in the numerical study of high-
frequency dynamic processes in LPRE combustion chambers with the aim to assess the possibility of using the
available numerical methods to simulate the above-mentioned processes in the problem of theoretical prediction
of LPRE high-frequency stability and the combustion chamber pressure and flow rate oscillation amplitudes.
Consideration is given to the currently adopted mechanisms of high-amplitude oscillations in the LPRE systems
involving the dynamic interaction of physical and chemical processes in the mixing and combustion zone in
conditions of periodical heat removal under the action of acoustic oscillations and turbulence in the flow and
combustion of the propellant components and combustion products.

The analysis conducted shows that the methods of mathematical simulation of high-frequency acoustic
oscillations in an LPRE can be divided into three basic groups: methods for the calculation of the acoustic
oscillation parameters in cylindrical chambers based on analytical mathematical models of a relatively low order
with the use of the Bessel functions, methods for the study of thermoacoustic phenomena using approaches of
computational fluid dynamics, and hybrid methods, in which combustion dynamics is calculated separately from
the combustion product acoustic oscillation parameters. The main results obtained in the framework of the above-
mentioned groups are overviewed. The advantages and drawbacks of the numerical study of combustion product
thermoacoustic oscillations in LPRE chambers are analyzed.
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