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Dynamic processes in the combustion chamber have a significant effect on the characteristics of the working
processes of solid-propellant rocket engines (LPREs). Pressure jumps and a sharp increase in the local temperature
of the combustion products in non-stationary engine operation modes can lead to overrating values of operating
parameters and a failure of the LPRE combustion chamber structure. The dynamic processes in the LPRE
combustion chamber develop in a complex interconnection of a large number of physical and chemical processes
that occur in the gas-dynamic part of the working space of the engine chamber and often lead to self-oscillating
modes of engine operation. This is evidenced by numerous data on LPRE fire tests. This paper presents the results
of a numerical study of the effect of the LPRE chamber inner surface roughness on LPRE operating parameter low-
frequency self-oscillations. The study was made using up-to-date computer simulation means and analysis.

Low-frequency (up to 1,000 Hz) oscillations in an LPRE combustion chamber were studied for a power plant
test chamber in cold operation with the use of two different approaches to numerical modeling of the dynamics of
in-chamber processes: the development and study of a 3D model of the dynamic system of combustion chamber
structure – combustion products using the finite element method and the development and study of an axisymmetric
2D model of engine chamber gas flow using the finite volume method.

The study revealed a self-oscillatory flow regime caused by combustion product vorticity and acoustic
feedback due to vortices colliding with the chamber components or the LPRE nozzle. It was shown that accounting
for the wall roughness increased gas vorticity in the gas–solid dynamic interaction zone and the chamber gas
oscillation amplitude (on the average, by a factor of 2.5 at a maximum wall roughness height of 56 μm). The
calculated gas flow pattern in the vorticity zones of the chamber and the low-frequency gas pressure oscillation
parameters are in qualitative agreement with the experimental ones.
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