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The aim of this article is to develop a simplified method for modeling cable-pulley deployment
systems of rod structures based on the calculation of cable tensions and nodal driving forces with
account for friction and other features of the system.

Methods of theoretical mechanics, multibody dynamics, numerical integration of differential
equations, and computer modeling were used during the research.

The task of developing a simplified approach to modeling cable-pulley deployment systems for
rod structures is considered. It is proposed to determine nodal driving forces by calculating cable
tensions with account for friction and other features of the cable-pulley system, cables, and pulleys.

To develop a model of cable-pulley deployment system, a rod system was chosen as the research
object, which represents two sections of the transformable support truss of a reflector. Each section
consists of diagonal and horizontal rods with tubular cross-sections. The sections are interconnected by
hinge units. The structure is deployed using an upper and a lower cable, which pass through pulleys
and are tensioned by an electric motor. The deploying forces are implemented by transferring the cable
tension forces to the structure due to static friction and pressure between the cables and the pulleys. For
further implementation of the model in an open-source software package, some simplifications were
made due to the complexity of the design.

A simplified method was developed for nodal driving force calculation in simulating rod structure
deployment with the help of cables. The tensions, elongations, slacks, and neutral length of the cables
and the forces transmitted from the cables to the pulleys were calculated as a function of time. Using
them, the deployment of a rod structure was simulated for a constant cable speed. The results make it
possible to control the rod system deployment time and rate depending on the characteristics and tension
forces of the cables.

The proposed approach is implemented using open-source software, and it provides modeling
flexibility and reduces the model development and run time.
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