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The characterization of cavitating pumps of liquid-propellant rocket engines (LPRE) is an important
problem because of the need to provide the pogo stability of liquid-propellant launch vehicles and the stability of
liquid-propellant propulsion systems for cavitation oscillations. The development of a reliable mathematical
model of LPRE cavitating pumps allows this problem to be resolved. The goal of this work is to determine the
cavitation number and operating parameter dependences of the coefficients of a lumped-parameter hydrodynamic
model of LPRE cavitating pumps from their theoretical transfer matrices obtained by a distributed-parameter
model. The following coefficients are found as a function of operating parameters: the cavitation elasticity, the
cavitation resistance, the cavity-caused disturbance transfer delay time, and the cavitation resistance distribution
coefficient. The last two coefficients are new in the hydrodynamic model of cavitating pumps, and they were
introduced when verifying the model using experimental and theoretical pump transfer matrices. Analyzing the
cavitation resistance distribution coefficient as a function of operating parameters shows that it markedly
decreases with increasing cavitation number. This testifies to that the location of the lumped cavity compliance is
shifted from the mid position towards the pump inlet.  Therefore, the assumption that the lumped cavity
compliance is located in the middle of the attached cavity regardless of the cavitation number is not justified. The
fact that the distribution coefficient as a function of cavitation number intersects the abscissa axis near a
cavitation number of 0.25 may indicate the boundary of existence of attached cavities and thus the applicability
boundary of the theoretical model. The disturbance transfer delay time as a function of cavitation number sharply
increases at cavitation numbers of about 0.05. At cavitation numbers of about 0.25, it is close to a constant.
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