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Cavities at the pump inlet may lead to inadmissible cavitation self-oscillations in the feed system of liquid-
propellant rocket engines (LPREs) and to POGO instability if the oscillation frequency of the liquid is close to
that of the rocket structure. Because of this, it is important to prevent both cavitation and POGO oscillations as
early as at the engine and rocket design stage. This calls for a reliable mathematical model of the dynamics of
LPRE cavitating pumps. In this paper, a hydrodynamic model of LPRE cavitating pumps is verified using
theoretical and experimental transfer matrices of cavitating pumps. The experimental transfer matrix was
borrowed from Brennen, Meissner, Lo, and Hoffman’s work because it features the least spread of values among
the matrices reported in the literature. The theoretical matrix was borrowed from Pilpenko and Kvasha’s work
where is was constructed for a cavitating pump as a distributed-parameter system. Four versions of the
hydrodynamic model of LPRE cavitating pumps are verified, and six possible model coefficients are considered.
Only one coefficient, namely, the liquid inertance at the cavity location, takes a physically meaningless negative
value, which makes its use impossible. The verification results show that a four-coefficient model of cavitating
pipe dynamics adequately describes cavitation effects in LPRE pumps over the frequency range up to 200 Hz. The
four coefficients are the cavitation elasticity, the cavitation resistance, the cavity-caused disturbance transfer delay
time, and the cavity time constant or the cavitation resistance distribution coefficient.
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