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The aim of this work is to analyze the state of the art in the development and use of pollution-free {“green”)
propellants in low-thrust jet engines used as actuators of spacecraft stabilization and flight control systems and to
adapt computational methods to the determination of “green”-propellant engine thrust characteristics. The
monopropellant that is now widely used in the above-mentioned engines is hydrazine, whose decomposition
produces a jet thrust due to the gaseous reaction products flowing out of a supersonic nozzle. Because of the high
toxicity of hydrazine and the complex technology of hydrazine filling, it is important to search for its less toxic
substitutes that would compare well with it in energy and mass characteristics. A promising line of this
substitution is the use of ion liquids classed with “green” ones. The main components of these propellants are a
water solution of an ion liquid and a fuel component. The exothermic thermocatalytic decomposition of a “green”
propellant is combined with the combustion of its fuel component and increases the combustion chamber pressure
due to the formation of gaseous products, which produces an engine thrust. It is well known that a “green”
propellant itself and the products of its decomposition and combustion are far less toxic that hydrazine and the
products of its decomposition, The paper presents data on foreign developments of “green” propellants of different
types, which are under test in ground (bench) conditions and on a number of spacecraft. The key parameter that
governs the efficiency of the jet propulsion system thrust characteristics is the performance of the decomposition
and combustion products, which depends on their temperature and chemical composition. The use of equilibrium
high-temperature process calculation methods for this purpose is too idealized and calls for experimental
verification. Besides, a substantial contribution to the end effect is made by the design features of propellant feed
and flow through a fine-dispersed catalyst layer aimed at maximizing the monopropellant-catalyst contact area. As
a result, in addition to the computational determination of the thrust characteristics of a propulsion system under
design, its experimental tryout is mandatory. The literature gives information on the performance data of “green”-
propellant propulsion systems for single engines. However, in spacecraft control engine systems their number may
amount to 8–16; in addition, they operate in different regimes and may differ in thrust/throttling characteristics,
which leads to unstable propellant feed to operating engines. To predict these processes, the paper suggests a
mathematical model developed at the Institute of Technical Mechanics of the National Academy of Sciences of
Ukraine and the State Space Agency of Ukraine and adapted to “green”-propellant engine systems. The model
serves to calculate the operation of low-thrust jet engine systems and describes the propellant flow in propellant
feed lines, propellant valves, and combustion chambers. To implement the model, use was made of the results of
experimental studies on a prototype “green”-propellant engine developed at Yuzhnoye State Design Office. The
analysis of the experimental results made it possible to refine the performance parameters of the monopropellant
employed and obtain computational data that may be used in analyzing the operation of a single engine or an
engine system on this propellant type in ground and flight conditions,
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