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The aim of the article is to approximate optimal relative control of an underactuated spacecraft using
reinforcement learning and to study the influence of various factors on the quality of such a solution.

In the course of this study, methods of theoretical mechanics, control theory, stability theory, machine
learning, and computer modeling were used.

The problem of in-plane spacecraft relative control using only control actions applied tangentially to the
orbit is considered. This approach makes it possible to reduce the propellant consumption of reactive actuators and
to simplify the architecture of the control system. However, in some cases, methods of the classical control theory
do not allow one to obtain acceptable results. In this regard, the possibility of solving this problem by
reinforcement learning methods has been investigated, which allows designers to find control algorithms close to
optimal ones as a result of interactions of the control system with the plant using a reinforcement signal
characterizing the quality of control actions.

The well-known quadratic criterion is used as a reinforcement signal, which makes it possible to take into
account both the accuracy requirements and the control costs. A search for control actions based on reinforcement
learning is made using the policy iteration algorithm. This algorithm is implemented using the actor–critic
architecture. Various representations of the actor for control law implementation and the critic for obtaining value
function estimates using neural network approximators are considered. It is shown that the optimal control
approximation accuracy depends on a number of features, namely, an appropriate structure of the approximators,
the neural network parameter updating method, and the learning algorithm parameters.

The investigated approach makes it possible to solve the considered class of control problems for controllers
of different structures. Moreover, the approach allows the control system to refine its control algorithms during the
spacecraft operation.
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