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The goal of this article is to develop an effective image preprocessing algorithm and a neural network model
for determining the force to be transmitted to a space debris object (SDO) for its non-contact deorbit.

In the development and study of the algorithm, use was made of methods of theoretical mechanics, machine
learning, computer vision, and computer simulation. The force is determined using a photo taken by an onboard
camera. To increase the efficiency of the neural network, an algorithm was developed for feature recognition by the
SDO edge in the photo. The algorithm, on the one hand, selects a sufficient number of features to describe the
properties of the figure and, on the other hand, significantly reduces the amount of data at the neural network input.
A dataset with the features and corresponding reference force values was created for model training. A neural net-
work model was developed to determine the force to be exerted on a SDO from the SDO features. The model was
tested using a set of eighteen calculated cases to determine the effectiveness, accuracy, and speed of the algorithm.
The proposed algorithm was compared with two existing ones: the method of central projections onto an auxiliary
plane and the multilayered neural network model that calculates the force using the SDO orientation parameters.
The comparison was performed using the root mean square error, the maximum absolute error, and the maximum
relative error. The test results are presented as tables and graphs.

The proposed approach makes it possible to develop a system of SDO non-contact removal that does not need
to determine the exact relative position and orientation with respect to the active spacecraft. Instead, the algorithm
uses camera-taken photos, from which the features necessary for calculation are extracted. This makes it possible to
reduce the requirements for its computing elements, to abandon sensors for determining the relative position and
orientation, and to reduce the cost of the system.
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