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Розвиток космічної енергетики є одним із відомих напрямків в ракетно-космічній науці та іннова-
ційних технологіях, що привертає увагу багатьох науковців і дослідників. Досить глибоке науково-
теоретичне опрацювання в цьому напрямі мають інженерні рішення щодо розробки конструкцій сонячних
електростанцій та засобів безконтактної передачі електроенергії на Землю та із супутника на супутник, а
також методи керування енергетичними космічними апаратами. Однак, незважаючи на глибоке науково-
теоретичне опрацювання, є потреба удосконалення існуючих методів і підходів щодо створення оптима-
льної методології проєктування космічних енергетичних апаратів. Одним із напрямів удосконалення під-
ходів щодо створення космічних сонячних електростанцій та енергетичних супутників може бути застосу-
вання методів рухомого керування при розробці системи орієнтації, стабілізації та корекції орбіти. Вико-
ристання таких методів дозволяє зменшити енергію, необхідну для забезпечення операцій керування.

Метою роботи є дослідження особливостей рухомого керування та формування методології розроб-
ки системи орієнтації, стабілізації та корекції орбіти космічних енергетичних супутників з використанням
алгоритмів рухомого керування. Розглянуто особливості синтезу алгоритмів рухомого керування для за-
безпечення орієнтації і стабілізації енергетичних космічних апаратів (сонячних електростанцій та енерге-
тичних супутників). Проведено класифікацію задач керування енергетичними космічними апаратами та
обґрунтовано доцільність застосування методів рухомого керування. Проведено аналіз проблеми стійкос-
ті, що виникає при керуванні енергетичними космічними апаратами з гнучкими елементами. Сформовано
методичні рекомендації щодо визначення проєктних параметрів системи керування кутовим рухом соняч-
них космічних електростанцій та енергетичних космічних апаратів типу безконтактної передачі електрое-
нергії із супутника на супутник. Цю методологію можна використовувати при створенні космічних елект-
роенергетичних супутників.

Ключові слова: енергетичний космічний апарат, система орієнтації, стабілізації та корекції ор-
біти, методи рухомого керування, методологія, безконтактна передача енергії.

The development of space power engineering is one of the well-known lines in rocket and space science and
innovative technologies which attracts the attention of many scientists and researchers. Engineering solutions in
space-based solar power plant design and wireless space-to-Earth and satellite-to-satellite power transmission and
power spacecraft control methods have been substantiated theoretically to sufficient depth. However, despite this,
there is a need to improve methods for and approaches to the development of an optimal design methodology for
power spacecraft. A way to improve existing approaches to the development of space-based solar power plants
and power satellites may be the use of mobile control methods in the development of an attitude and orbit control
system. Such methods allow one to reduce power consumption for control operations.

The goal of this paper is to study the features of mobile control and construct a methodology for the devel-
opment of solar power satellites’ attitude and orbit control system (AOCS) using mobile control algorithms. The
paper considers the features of mobile control algorithm synthesis for the attitude control and stabilization of solar
power spacecraft (solar power plants and power satellites). Power spacecraft control tasks are classified, and the
expediency of using mobile control methods is justified. An analysis is made for the stability problem that arises
in controlling power spacecraft with flexible elements. The paper presents methodological recommendations on
determining the AOCS design parameters for space-based solar power plants and power spacecraft for wireless
satellite-to-satellite power transmission. This methodology may be used in power satellite development.

Key words: power spacecraft, attitude and orbit control system, mobile control algorithms, methodology,
wireless power transmission.

Introduction. The interest to the space solar energy has been observed over
the last decades. The fundamental scientific works in this area are usually dedicat-
ed to the peculiarities of super large space solar power plants development [1–4].
These super large power plants are proposed for the contactless electricity trans-
mitting from the near-Earth space to the power receivers on the Earth surface.
Considering the volume of needed power [1, 4] it can be justified the so large size
of these space systems. So, according to the overview of such systems [3, 4] the
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average size of their cross-section area more than 1 2km . Considering it, so large
constructions have to be launched only by parts with further in-orbit assembly. In
turn, given the current state of aerospace technology development, the super large
space solar power plants are very complicated for practical implementations and
launch. According to analytical analysis [3] the first experimental launches of the
large solar power satellites are expected only in the second half of the 21-th centu-
ry under an optimistic scenario.

Taking into account the current problems of super large space power satellites
launch, the creation of mini electrical-power satellites for testing in-space is ob-
served last years [5, 6]. Such satellites are usually proposed in the range of masses
and sizes from nano- (several kg) to small (not more than 500 kg). So, it has been
offered to test the possibility of contactless power transmitting from satellite to
satellite (sat-to-sat) in space using micro satellite-transmitter (with mass – 50 kg)
and cubesat – receiver (with mass – 1.33 kg) [5]. According to the estimations the
distance of contactless power transmitting is variated from 8 m to 300 m depend-
ing on the transmitter and receiver apertures parameters and microwave frequency.
Considering the maximum distance of contactless power transmitting the for-
mation flying type of motion is possible for such satellites. In this case, the satel-
lite-transmitter has to keep the relative distance with satellite-receiver within the
permissible range (for example less than 300 m).

The next approach [7] is based on the usage of barraging electrical-power sat-
ellites without maintaining a constant distance between the receiver and transmit-
ter. In this case, contactless power transmitting is only possible in certain sessions
when the relative distance between the receiver and transmitter is less than or
equal to the maximum possible contactless power transmitting distance for these
satellites.

Thus, having these different types of relative motion between the spacecraft-
receiver and the spacecraft-transmitter, it is arisen the problem of determining the
most optimal AOCS configuration for these spacecrafts in all cases of relative
flight. One of the quasi-optimal controls is based on the use of mobile control
methods [8]. Such approaches allow to reduce the energy that is needed for provid-
ing control by switching the control loops with determined number of actuators.
Thus, the paper proposes to assess the feasibility of such approaches for control-
ling space solar power plants and power satellites.

Literature review and problem statement. The one of the approaches of su-
per large space solar-power plants control is presented in the paper [9]. The au-
thors proposed the mathematical model that considers the oscillations of flexible
elements of the construction and changes in the inertia tensor during deployment
in orbit. The obtained results demonstrated the expediency of using this mathemat-
ical model of the dynamics of the system with programmatically variable geometry
in the analysis of the real small spacecraft behavior in the process of a large radius
ring antenna deployment. However, the methodology of control for these trans-
formable space constructions hasn't been presented.

Taking into account the oscillations and vibrations of flexible elements of
space solar-power plant construction is also suggested in paper [10]. In this case,
instead of the Euler-Lagrange equations (as in paper [9]), it has been proposed the
usage of special elasticity coefficients with the help of which the influence of elas-
tic oscillations on the translational and attitude motion of the solar power plant is
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evaluated. In turn, the oscillations of flexible elements are described by second
order differential equations [10]. The use of this approach allowed to calculate the
permissible thresholds of mass and inertia tensor deviation at which the control
system fulfills the necessary requirements for the accuracy of orientation and stabi-
lization. Also, the use of this methodology also made it possible to formulate re-
quirements for the control system of a solar space power plant, namely for dedicat-
ed orientation and stabilization subsystems. However, in [10] the essence concern-
ing the peculiarities of synthesis of control laws for such spacecraft was not re-
vealed. Thus, in this paper [10], the problem of providing the controllability of
such systems is undisclosed.

The deeper analysis of solar-power plants dynamics simulation is presented in
[11]. The authors of the paper carry out a comparative analysis of 4 main methods
that are used for modeling the dynamics of large space structures taking into ac-
count the vibrations of flexible elements. These methods are:

– the finite element method;
– the absolute nodal coordinate method;
– the floating frame formulation method;
– the structure-preserving method.
According to [11], the most popular and widely used method is the finite ele-

ment method. In turn, to use this method more correctly, special software (Solid
Works, Catia, etc.) is required. Another problem of finite element methods imple-
mentation is connected with integration special software with new developed soft
modules such as libraries of the spacecraft 6-dof motion. Also, in [11] it is stated
that the other methods also require significant computing power. Considering it,
for preliminary analysis of such space constructions motion in order to obtain gen-
eral estimates it is advisable to use simplified algorithms for flexible elements
fluctuations [12, 13]. These algorithms are very convenient for integration with
models of spacecraft orbital and attitude motion that allows to carry out complex
numerical or analytical analysis.

In turn, existing well-known approaches to control such spatial structures are
based on classical controller design methods [14 – 16]. These methods are ground-
ed on traditional control synthesis using proportional-integral differential (PID)
controllers, proportional-differential (PD) [14, 16] controllers, linear-quadratic
regulators (LQR), H-inf [16] controllers. In general, without the use of sampling
(discretization), such controllers provide continuous control, that can require sig-
nificant energy for actuators operation. However, in the case of control discretiza-
tion implementation for PD controller and pulse-with modulator usage [17] the
consumption of onboard energy can be reduced. It was achieved by minimizing the
control operations at each time interval. But, applying only discrete control for a
distributed actuator system will not be optimal, and can also instigate the reso-
nance when coincide the self-oscillation frequency of the super large space system.

The one of solutions for damping the self-oscillations was proposed in [18].
The new method of using giant magnetostrictive actuator to control the structural
vibration of a large space solar power plant in orbit was proposed in the paper
[18]. The obtained results have shown the efficiency of this approach, but the addi-
tional control of vibrations using electromagnetic actuators will require additional
power consumption. Considering it, such approach can’t satisfy some control
modes requirements (for example the mode of power accumulation with minimal
consumption). In turn, the one of the approaches to synthesis controllers that allow
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to minimize the energy consumption for control operations of the spacecrafts was
proposed by professor A. P. Alpatov [8, 19]. These methods were based on syn-
chronous [8, 19] or asynchronous [20, 21] switching of control channels, but in
contrast to relay switch the approach of control synthesis was grounded on piece-
wise continuous functions usage. Control channels in this case mean control sub-
systems with certain sets of actuators (1 or more). The use of this approach allows
reducing the number of active actuators at each control cycle, minimizing the in-
fluence of intrinsic disturbances for magnetic control systems, and, as a conse-
quence, reducing the consumption of onboard energy required for control.

Thus, the paper proposes to analyze the peculiarities and feasibility of using
mobile control approaches to provide attitude stabilization for the type of space
solar power satellite constructions with flexible elements.

The aim and objectives of the study. The aim of the research is the analyti-
cal and numerical analysis of mobile-control algorithms implementation for the
solar power satellites attitude stabilization that have flexible elements of construc-
tion. It can make it possible to understand the possibility of mobile control ap-
proaches implementation to the spacecrafts that have elastic oscillations of flexible
elements. To achieve this purpose, it has been set the following tasks:

 formalization of mathematical model of angular motion for power satel-
lite with flexible elements;

 analysis of the power satellite perturbative angular motion in stabilize
mode in the case of small angular deviations;

 determination of the spacecraft attitude motion stability condition tak-
ing into account fluctuations of the flexible elements.

The methods and materials of the study. The object of research is the con-
trol of satellite angular motion.

The subject of the research is the theoretical analysis of the satellite angular
motion control peculiarities taking into account oscillations of flexible panels and
using mobile control methods.

To provide this study the following methods have been used:
1) mathematical modeling and computer simulation (the mathematical model

of satellite angular motion has been formalized and the special C++ software mod-
ules have been prepared);

2) infinitesimal calculus and multiplicative integrals for condition of stability
formulation;

3) differential equations, quaternion algebra and vector analysis for determina-
tion of the satellite motion dynamic and kinematic parameters.

Formalization of mathematical model of angular motion for power satel-
lite with flexible elements. The mathematical model of satellite angular motion
taking into account oscillations of flexible elements and changing in tensor of iner-
tia is presented in the paper [9]. This model is based on Euler–Lagrange equation,
that can be written as follows:

 + + + = + +d dJ
J J
dt dt

  


    cont. pert. flct.
0K M M M , (1)

where J is the tensor of inertia of the power satellite with flexible elements;  is
the vector of power satellite angular velocity in Body Reference Frame (BRF),
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relative to J2000 inertial reference frame [22]; 0K is the resulting angular mo-

mentum generated by the oscillations of the satellite flexible parts in BRF; cont.M

is the vector of control torque in BRF; pert.M is the sum of perturbative torques
vectors in BRF; flct.M is the perturbative torque that generates by the fluctuations
of satellite construction flexible elements.

In addition to BRF and J2000 inertial reference frame, WGS-84, Orbital refer-
ence frame (ORF), Local vertical local horizontal (LVLH) reference frame and
STW reference frame are also used in the study. These reference frames are de-
scribed in the publications [22, 23].

The quaternion equation is proposed to use for obtaining full group of kine-
matic attitude parameters (angular velocities and quaternion). This equation can be
written in the matrix form as follows:

x y z

x z y

y z x

z y x

dQ

dt
QdQ
Qdt
QdQ

dt Q
dQ

dt

 
 
                                         
 
 

0

01

1

22

3

3

0

01
02

0

, (2)

where Q0 , Q1 , Q2 , Q3 are components of the quaternion J BRFQ 2000 of tran-
sition from J2000 inertial reference frame to BRF in BRF coordinates; x , y ,

z are the components of the angular velocity vector  .

In turn, to use this quaternion for analysis of attitude orientation is not so con-
venient. In this regard it is proposed to estimate the quaternion LVLH BRFL  of
transition from LVLH reference frame to BRF in BRF coordinates. It can be done
using vectors of power satellite position J 2000R and velocity J 2000V in J2000
inertial reference frame and then using algorithm [24] for determination of the
transiting matrix from J2000 inertial reference frame to LVLH. Then, using ap-
proach [25] the quaternion of transition from LVLH to J2000 LVLH JL  2000 is
calculated. Finally, the quaternion LVLH BRFL  is calculated using next equality:

LVLH BRF LVLH J J BRFL L Q   2000 2000 . (3)

The models of flexible oscillations are proposed as the model of free oscilla-
tions without damping.

The use of free oscillation model in this paper is explained by the fact that this
study proposes to investigate the effect of classical harmonic oscillations of struc-
tural elements on the power satellite attitude stabilization using mobile control al-
gorithms without taking into account the characteristics of the source that gener-
ates these oscillations. Thus, in a general approximation, it is proposed to study the
effect of a single oscillating element on the attitude motion of a power satellite.

So, mathematical model of free oscillations without damping can be described
by differential equations in the following form [26]:
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,
,
,

m c

m c

m c

   
   
   

1

2

3

0

0

0







(4)

where m is the mass of oscillation element;  is the displacement of center of
mass coordinate of the oscillating element along the OX axis of BRF;  is the dis-
placement of center of mass coordinate of the oscillating element along the OY
axis of BRF;  is the displacement of center of mass coordinate of the oscillating
element along the OZ axis of BRF; c1 , c2 , c3 are the elasticity coefficients of
body construction materials at corresponding displacements.

Setting initial time of oscillations t  0 , the solutions of the equations (4) can
be written in the next forms [26]:

 
 
 

sin ,

sin ,

sin ,

 

 

 

    

    

    

p t

p t

p t

1

2

3

A

A

A

(5)

where A , A , A are the amplitudes of flexible element oscillations along OX,
OY and OZ axes of BRF;  ,  ,  are the corresponding initial phases of these

oscillations; c
p

m
 1
1 ; c

p
m

 2
2 ; c

p
m

 3
3 .

Using these equalities (5) it can be found the velocity and acceleration projec-
tions of oscillation element as follows:

 
 
 
 
 
 

cos ,

cos ,

cos ,

sin ,

sin ,

sin ,

V p p t

V p p t

V p p t

W p p t

W p p t

W p p t

  

  

  

  

  

  

    

    

    

     

     

     

1 1

2 2

3 3

2
1 1

2
2 2

2
3 3

A

A

A

A

A

A

(6)

where V , V  , V  are the velocity projections of oscillation element relative to the
spacecraft center of mass;W ,W  ,W  are the acceleration projections of oscil-
lation element relative to the spacecraft center of mass.

The resulting angular momentum generated by the oscillations of the satellite
flexible parts in BRF 0K and perturbative torque that generates by the fluctua-

tions of satellite construction flexible elements flct.M are calculated using next
formulas:
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 

 
 
 

,

,

,

,

,

  

 

 

 

     

   

 

 

   
 
    
 
    

T

T

mW mW mW

m V V

m V V

m V V

flct

flct

sum flct cm

flct sum flct

0

F

r

R r r

M R F

K

(7)

where flctF is the perturbative force of inertia that generates during oscillations;
flctr is the radius-vector of oscillation element center of mass relative to its nomi-

nal initial position; cmr is the vector that links spacecraft center of mass with the
oscillating element center of mass.

Considering the fact that it is proposed to analyze the peculiarities of power
satellite with flexible element stabilization at low deflection angles and low angu-
lar velocities the following assumptions can be done:

1) min, minimum is in the vicinity of zero (the angular velocity of oscil-
lations relative to the spacecraft center of mass is higher than  );

2) it is proposed to neglect by the values dJ

dt
 0 and  J   0  in

the equation (1);
3) considering first and second items, the equation (1) can be simplified, as

follows:

+ = +d
J
dt

 


 cont. pert. flct.
0K M M M . (8)

It is proposed to take into account the next components of pert.M : gravita-
tional perturbative torque, aerodynamic perturbative torque and solar pressure per-
turbative torque. These torques are proposed to calculate using approaches [22,
27]. Evaluating this equation, it can be obtained:

   = +d
A A

dt
    


cont. pert. flct.

0M M M K , (9)

where A = J 1 ,
xx xy xz

yx yy yz

zx zy zz

A A A

A = A A A

A A A

 
 
 
  

, xxA , xyA … zzA are corresponding

elements of matrix A .

Decomposing the vector product   0K and then multiply matrix A to
this decomposition it can be obtained the following form of equation (2):

 = +d
B A

dt
   


 cont. pert. flct.M M M , (10)
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where
xy oz xz oy xz ox xx oz xx oy xy ox

yy oz yz oy yz ox yx oz yx oy yy ox

zy oz zz oy zz ox zx oz zx oy zy ox

А K A K А K A K А K A K

B = А K A K А K A K А K A K

А K A K А K A K А K A K

   
    
    

;

oxK , oyK , ozK are components of the vector 0K .

Assuming that changes of parameters in small limits of angular velocity and
quaternion of spacecraft orientation can be considered linear and insignificance of
the state vector increment, it is proposed to present control in deviation form:


  d

dt
A B C

X
= X+ U+  , (11)

where


         x y z Q Q Q Q0 1 2 3X= is the vector of
state vector parameters deviations from the program kinematic parameters;


 
 

cont cont cont
x y zM M MU= 0 0 0 0 is the control vector;


 
 

pert pert pert
x y zM M M 0 0 0 0  is the vector of perturbations;





 
 
 
 


B O

O

3 4

3 3

A = 1

2

is the state matrix;

   
      
   
     

x y z

x z y

y z x

z y x

0

01 1
02 2

0

;



 

 
  
 

 A O

O O
3 4

3 3 3 4

B=C are the control and perturbative matrices; cont
xM , cont

yM ,

cont
zM are the projections of the vector of control torque on BRF axes; pert

xM ,
pert
yM , pert

zM are the projections of the vector of perturbative torque on BRF

axes; .   pr
x x x , .   pr

y y y , .   pr
z z z ;    prQ Q Q ;

.прx , .прy , .прz are the projections of program values of angular velocity on the
BRF axes; prQ is the quaternion of program orientation.

The control


 
 

cont cont cont
x y zM M MU= 0 0 0 0 is proposed to

be synthesized using mobile control methods and proportional-integral-derivative
(PID) controller [7]. Considering it, the control algorithm is offered in the next
form:
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 

 

 

( )

,

( ) ,

( )

        

 


 


         

 
 
 

        








cont
x xx xy xz x

cont
y

cont
z

cont
x

cont
y yx yy yz y

cont
z

cont
x

cont
y

cont
z zx zy zz z

M J J J K K Q K Q dt

M lp

M

M

M J J J K K Q K Q dt lp

M

M

M

M J J J K K Q K Q dt

1 2 1 3 1

1 2 2 3 2

1 2 3 3 3

0 1

0

0

2

0

0

0 ,

,






 


 

cont
x

cont
y

cont
z

lp

M

M lp

M

3

0

0 4

0 (12)

where xxJ , xyJ , xzJ , yxJ , yyJ , yzJ , zxJ , zyJ , zzJ are the components of

power satellite tensor of inertia; cont
xM , cont

yM , cont
zM are the projections of

control torque on the BRF axes; K1 , K2 , K3 are the gains of PID-controller;

x , y , z are the mismatches by angular velocities; Q 1 , Q 2 , Q 3 are
the mismatches by vector part of quaternion; lp 1 , lp 2 , lp 3 , lp 4 are
the control loops numbers.

The function that switches control loops can be determined using approach
[20] as follows:

if ,
if ,

switch
if ,
if ,

, , , ... ,
, , , , ..... ,end

lp k T k

lp k T k

lp k T k

lp k T k

k n

n n

   
          
     

 


1 2 10 2

2 2 2 10

3 2 10 2 20

4 2 20 2 30

5 25 45 65 20 5

0 1 2 3 4

(13)

where n is the number of control cycle; endn is the number of last control cycle;
T is the time of controller in samples (1 sample is proposed to be equal 0.1 s).

However, to analyze stability of the system (11) using traditional approaches
is complicated task considering nonlinearity due to the impact of oscillations. Tak-
ing it into account, it is proposed to decompose the analysis of stability into two
stages. At first stage it is proposed to analyze the stability of angular velocities,
that are estimated using solutions of simplified model (10). After angular veloci-
ties stability analysis, it is proposed to analyze spacecraft orientation quaternion
deviations from its program values.
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In spite of similarity of the model (10) in general form with the system of lin-
ear differential equations (LDE), it cannot be classified as LDE mathematical
model. It can be explained by the nonlinearity due to the presence of oscillatory
components ( flct.M and 0K ) in equation and perturbative torques in (10). Taking
it into account the components of matrix B are dependent on time ( )B = B t . In
turn, it is proposed to assume that at small time intervals the changes in the matrix
B components will be insignificant (i.e., they can be neglected and the matrix
components can be considered constant at these intervals). The same assumption is
proposed to the changes of perturbative torques at these small intervals. The width
of each time interval is determined according to these assumptions where the sys-
tem (10) is considered to be linear on this interval, and the changes in the compo-
nents cont. pert. flct.M ,M ,M and components of the matrix B are insignificant
and their values can be considered constant on this small-time interval. Based on
this, it is proposed to use Routh–Hurwitz stability criterion [28] for analysis the
zero solution of general solution of equation (10) in each sample. The width of
each sample is determined according to the assumption when system (10) is con-
sidered to be linear at this interval (the width of sample). In turn, in the case of
dividing the whole trajectory by parts and analyzing stability properties of general
solution in each part, the criteria of stability similar to Bellman’s optimum princi-
ple can be formed:

Condition of stability 1. The general solution of the system of differential
equations (10) is stable in whole interval of time in the case if it is stable in each
sample of time during motion.

However, in practice, the system may not be stable for all time samples of the
entire time interval while the control assurance requirements can be met. Partial
loss of stability of a system with oscillating elements when using mobile control
methods may occur in the following cases:

1) at the moments of switching of control loops (using mobile control);
2) in the event of a momentary control shutdown.
Taking it into account the condition of stability 1 is so strict for stability anal-

ysis of the system (10). Thus, it is advisable to change this criterion for more flexi-
ble by adding the threshold of maximum percentage of stabile cases in all time
samples of whole interval. So, the condition 1 can be updated using following
formulation:

Condition of stability 2. The general solution of the system of differential
equations (10) correspond to the requirements of stability when the difference be-
tween whole number of samples k and number of samples with stable solution of
system (10) l in the time interval less then predetermined value of threshold  :
k- l <  . In turn to determine value  for all cases is very complicated task. Con-
sidering this, it is reasonable to use threshold in percentage:


k- l

100%<
k

 , (14)

where  is the maximum permissible percentage of unstable cases in whole time
interval.
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The  is determined depends on control accuracy requirements and properties
of power satellite construction flexible oscillations. In turn, it is proposed to use
mentioned above Routh–Hurwitz stability criterion for determining l number. To
determine the general form of the characteristic polynomial and its coefficients at
each time sample, it is proposed to use matrix B (10). Considering that matrix B
has size 3×3 the characteristic polynomial that can be determined using inequality
 det B E   0 (E is identity matrix) will have 3-rd order and can be written in

the next form:

a a a a      3 2
0 1 2 3 0 , (15)

where a a0 3 are coefficients of characteristic polynomial.

These coefficients are determined from equality  det B E   0 (taking into
account requirement a 0 0 ) as follows:
a 0 1 ;  xx yy zza B B B   1 ;

xx yy zz yy zz xx xz zx xy yx zy yza B B B B B B B B B B B B     2 ;

;
zy yz xx xy yx zz xz zx yy xx yy zz

xy zx yz yx xz zy

a B B B B B B B B B B B B

B B B B B B

    

 
3

xxB , xyB , xzB , yxB , yyB , yzB , zxB , zyB , zzB are the components of
matrix B .

Taking into account the peculiarities of characteristic polynomial the Routh-
Hurwitz stability criterion for this case is following:

1) The main diagonal minors are a 1 1 ,
a a

a a
  1 0
2

3 2

,
a a

a a a

a

 
1 0

3 3 2 1

3

0

0 0

.

2) The general solution is stable in determined time sample if current values
of  1 0 ,  2 0 and  3 0 . Otherwise, the general solution is instable.

Thus, the mathematical model of angular motion for power satellite with flex-
ible elements has been formalized (1) – (15). The condition of the simplified sys-
tem (10) general solution stability has been determined. However, for the full
analysis of power satellite attitude stabilization using mobile control methods and
synthesis of complex criterion of stability the computer simulation is required.

Computer simulation of the power satellite perturbative angular motion
in stabilize mode in the case of small angular deviations. The computer simula-
tion is proposed for the modelling of power satellite with flexible elements 6-dof
perturbative motion for two cases:

1) using simplified model of attitude motion (10);
2) using full model of attitude motion (1).
Both models include perturbations of oscillations (4) – (5), gravitational per-

turbative torque, atmospheric perturbative torque and solar pressure perturbative
torque. The purpose of using two models is to verify the adequacy of simplifica-
tion (10) compared to using model (1) for the case of small attitude deviations. The
model of orbital motion that has been used in program simulator is described in
[20, 22].
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Initial parameters for the simulation:
Orbit:
Focal parameter: 7045254.273 m;
Eccentricity: 0.00141871;
Inclination: 98 degrees;
RAAN: 135.249 degrees;
Argument of perigee: 121.177 degrees;
Argument of latitude: 306.234 degrees.
Mass, size and inertia parameters of the power satellite:
Mass of the spacecraft: 500 kg;
Average cross-section area of the spacecraft: 5 m2 ;
Tensor of inertia (at initial time):

40xxJ  kg m 2 , 0.25xyJ  kg m 2 , 0.15xzJ   kg m 2 , 0.25yxJ 

kg m 2 , 30yyJ  kg m 2 , 0.3yzJ   kg m 2 , 0.15zxJ   kg m 2 ,

0.3zyJ   kg m 2 , 50zzJ  kg m 2 .
Mismatch between center of mass and center of pressure in BRF:

0.3X  m; 0.5Y  m; 0.1Z  m.
Parameters of oscillations:

0.02 A m; 0.02 A m; 0.05 A m.
20m  kg; 0.2c 1 N/m ; 0.2c 2 N/m ; 1.0c 3 N/m .

Initial position of the oscillation element in BRF:  0.3 0.6 0.5 T flctr .
20  deg, 20  deg, 20   deg.

Initial deviation in LVLH BRFL  quaternion:

. 0.97069171535712184LVLH BRFL  0 ;

. 0.14305901906629273LVLH BRF XL    ;

. 0.062517963671981605LVLH BRF YL    ;

. 0.18271074138962684LVLH BRF ZL   .
Quaternion of program orientation in LVLH reference frame:

. 1pr
LVLH BRFL  0 ; . 0pr

LVLH BRF XL   ; . 0pr
LVLH BRF YL   ;

. 0pr
LVLH BRF ZL   .

Initial values of angular velocities:
0.3x  deg/s, 0.2y   deg/s, 0.2z  deg/s.

Program angular velocities:
0x  deg/s, 0y  deg/s, 0z  deg/s.

Controller parameters: 9K 1 , 0.9K 2 , 10K  6
3 .

Simulation time: 86400 s; Initial simulation data and time: December 12,
2023.
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Simulation results:

Fig. 1 – Changing in angular velocities x , y , z (Ome_Body_J2000_x,
Ome_Body_J2000_y, Ome_Body_J2000_z are the x , y , z that obtained using

model (1); Ome_Body_J2000_x_lin, Ome_Body_J2000_y_lin, Ome_Body_J2000_z_lin
are the x , y , z that obtained using simplified model (10))

Fig. 2 – Mismatches in angular velocities when using model (1) and model (10)

Fig. 3 – Changing in LVLH quaternion during simulation (where L_LVLH_0,
L_LVLH_X, L_LVLH_Y, L_LVLH_Z the quaternion .

pr
LVLH BRF ZL  that obtained

using model (1); L_LVLH_0_lin, L_LVLH_X_lin, L_LVLH_Y_lin, L_LVLH_Z_lin
the quaternion .

pr
LVLH BRF ZL  that obtained using simplified model (10))
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Fig. 4 – Mismatches in vector parts of LVLH quaternion when using model (1) and
model (10)

It can be seen from the obtained results (fig. 1–fig. 3) that the simplified mod-
el (10) has shown almost the same result as model (1). The largest differences are
at the beginning of the trajectory, at the moment of small reorientation (fig. 2, fig.
4). The differences of the models in the angular velocities in stabilize mode are
observed at 3 and 4 digits after the dot (fig. 2) and in vector part of the quaternion
at 4 and 5 digits after the dot (fig. 4) with further convergence at the end of the
trajectory (fig. 4). Thus, it can be concluded that the assumption (10) under the
simplification of model (1) is valid at small attitude deviation and can be used for
estimation calculations of angular stabilization of satellites with flexible elements.

Testing the condition of stability 2 applicability for analysis the general solu-
tion of the equation (10), it has been proposed to estimate the stability of this solu-
tion at each time sample using the above-mentioned Routh–Hurwitz criterion. For
this purpose, it is proposed to take a certain section of the trajectory in the stabili-
zation mode after reorientation and analyze the stability of the general solution of
equation (10). So, it has been selected the part of the trajectory in time period from
10000 s to 11000 s and obtained the result in fig. 5.
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Fig. 5 – The sign of the equation (10) general solution stability at each time sample
(1 time sample = 0.1 s) using Routh–Hurwitz criterion, where: 1 – stable, 0 – instable.

It can be seen that sign of the general solution stability has periodical chang-
ing in time (fig. 5) that corresponds to the requirements of using condition of sta-
bility 2. The obtained value of the stable solutions number at this interval l=5010
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with whole number of samples k=10000. So, if to use the formula (14), setting  =
50%, the requirement of stability is satisfied. Considering it, the condition of sta-
bility 2 can be used for analysis of general solution peculiarities.

Fig. 6 – The changing of matrix B elements xxB , xyB , xzB , yxB , yyB , yzB ,

zxB , zyB , zzB on time

Considering, that elements of matrix B of the differential equation system
(10) are also have time-periodic character of change (fig. 6), the infinitesimal cal-
culus approaches can be used for their determination [8]. On this basis, the rela-
tionship between the elements of the matrix B at successive stable time periods
can be expressed using the multiplicative integral in this way [8]:

   
,

,

, .

ij

i j

t N

ij ijk ijk
kt

E B dt E B t

k N




   




1

1 2

(16)

where ijB is the value of matrix B at i -th control sample of j -th stable time
sample according condition of stability 2; ijkt is the k -th time step between

ijB and ,i jB 1 stable general solutions; ijkB is the value of ijB matrix at k -th
time step.

However, taking into account the periodicity of changes in the stability of the
general solution, these conditions can be used only as necessary conditions of sta-
bility, but not as a sufficient one. In the cases of another controller gains the condi-
tion of stability 2 could show incorrect result regarding system stability. So, if the
controller parameters set equal 1.2K1 , 0.12K2 , 10K  6

3 , the modeling
results will be the following (fig. 7 and fig. 8). However, the sign of the equation
(10) general solution stability at each time sample is similar to the results present-
ed on fig. 5.
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Fig. 7 – Changing in LVLH quaternion in the case of the controller gains
1.2K1 , 0.12K2 , 10K  6

3 (Q_LVLH_0, Q_LVLH_X, L_QVLH_Y,

Q_LVLH_Z the quaternion .
pr
LVLH BRF ZL  that obtained using model (1))

Fig. 8 – Changing in angular velocities x , y , z in the case of the controller

gains 1.2K1 , 0.12K2 , 10K  6
3 (Ome_Body_J2000_x, Ome_Body_J2000_y,

Ome_Body_J2000_z are the x , y , z that obtained using model (1))

Thus, to determine the full condition of stability it is required to add the
quaternion deviation condition.

Determination of the complex stability condition for a power satellite
with flexible elements motion when using mobile control. To develop the full
criterion of the stability it will be reasonable to use the analysis by the quaternion
vector part 2-norm deviation and by linear deviation of quaternion scalar part. It is
proposed to use LVLH BRFL  quaternion for analysis of stability. Considering it,
the sufficient condition of stability can be written in the next form:
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 
 
 

. .

. .

. .

. .

( ) ,

( ) ,

( ) ,
(

pr
LVLH BRF LVLH BRF LVLH BRF

pr
LVLH BRF x LVLH BRF x

pr
LVLH BRF LVLH BRF y LVLH BRF y

pr
LVLH BRF z LVLH BRF z
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Scalar L L L

L L

Vect L L L

L L

Scalar L

Vect

  

 

  

 



  
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 
 
   

  



0 0

2

2

2

2

) ,LVLH BRFL   
2

(17)

where ( )LVLH BRFScalar L  is the absolute value of linear deviation of

LVLH BRFL  quaternion scalar part; ( )LVLH BRFVect L 
2

is the

LVLH BRFL  quaternion vector part 2-norm deviation;  is the threshold by line-
ar deviation of LVLH BRFL  quaternion scalar part;  is the threshold by

LVLH BRFL  quaternion vector part 2-norm deviation.

Thus, the complex condition of stability is proposed to formulate as follows:

Complex stability condition: For control stability of a spacecraft with flexible
oscillating elements when using mobile control methods, it is necessary and suffi-
cient to have a certain number of time samples with a stable general solution k of
the differential equation system (10) considering (14) where the condition (17) is
satisfied.

Setting 0.01429  and 0.0002  it has been obtained the following results
of the full stability analysis in time period from 10000 s to 11000 s (fig. 5).
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Fig. 9 – The sign of the control stability at each time sample (1 time sample = 0.1 s) using
Complex stability condition, where: 1 – stable, 0 – instable.

Analyzing obtained results, it can be seen, that the attitude control system
based on mobile control algorithm (12) – (13) of the power satellite with flexible
oscillating element provides time-periodical stable solutions at time periods when
all conditions of Complex stability condition are satisfied. From one hand, it can
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be concluded that despite of the time-periodic switching of control loops and the
influence of elastic oscillations the control system has time-periodic stability and
can maintain it for long time intervals. From the other hand it corresponds to the
definition of “Conditionally Stable Systems” when stability conditions are deter-
mined according to the proposed Complex stability condition.

Conclusions. The initial studies of the peculiarities of mobile control imple-
mentation algorithms for spacecraft with flexible structural elements are carried
out. It has been formalized the generalized mathematical model of power space-
craft angular motion considering impact of the flexible elements fluctuations. The
influence of elastic oscillations on the control accuracy when using mobile control
algorithms is shown. Using mathematical and computer modeling of the spacecraft
with elastic oscillating structural element motion it has been formed the general
conditions of control stability. These stability conditions are a special case when
modeling oscillations as free harmonic for one oscillating element. In the presence
of several oscillating elements, these conditions need to be specified. In turn, the
proposed approaches for stability evaluations on small time intervals can be
adapted to various models of spacecraft dynamics that have elastic oscillating
structural elements, which gives directions for further research.
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