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Метою статті є розробка спрощеного метода моделювання тросових систем розгортання
стрижневих систем,  що дозволяє визначити натяг тросів та вузлові рушійні сили з урахуван-
ням тертя та інших особливостей розглянутої системи.

При проведенні досліджень використані методи теоретичної механіки, систем зв’язаних
тіл, чисельного розв’язання систем диференційних рівнянь та комп'ютерного моделювання.

Розглянута задача розробки спрощеного методу моделювання тросових систем розгор-
тання стрижневих конструкцій. Запропоновано визначати вузлові рушійні сили шляхом розра-
хунку натягу тросів з урахуванням тертя та інших особливостей  стрижневої конструкції, тро-
сів та шківів.

При створенні моделі тросової системи розгортання в якості об’єкта дослідження було
обрано стрижневу систему, яка представляє собою дві секції опорної ферми рефлектора, що
трансформуються. Кожна секція формується із діагональних та горизонтальних стрижнів тру-
бчатого поперечного перерізу. Секції поєднані між собою шарнірними вузлами. Конструкція
розгортається за допомогою верхнього та нижнього тросів, що проходять через систему шківів
та натягуються за допомогою електродвигуна. Зусилля, що розгортають, реалізуються шляхом
передачі конструкції сил натягу троса за рахунок статичного тертя та тиску між тросом та шкі-
вами. Для подальшої реалізації моделі у програмному пакеті з відкритим кодом зроблено деякі
спрощення, які обумовлені складністю конструкції.

Розроблено спрощений метод розрахунку вузлових рушійних сил при моделюванні роз-
гортання стрижневих конструкцій за допомогою тросів. Отримано залежності натягу, подов-
ження, послаблення та зміни нейтральної довжини троса від часу, а також зміни з часом сил,
що передаються шківам від троса. З використанням цих результатів проведено комп’ютерне
моделювання процесу розгортання стрижневої конструкції для випадку постійної швидкості
намотки тросів лебідкою. Результати дають змогу контролювати час та швидкість розгортання
стрижневих систем в залежності від характеристик та сил натягу тросів.

Запропонований підхід реалізовано з використанням загально доступного програмного
забезпечення. Цей підхід дозволяє забезпечити гнучкість моделювання та скоротити час ство-
рення та розрахунку моделей.

Ключові слова: тросова система розгортання; конструкції, що трасформуються; багатотільна
динаміка; відкрите програмне забезпечення; гнучкий стрижень.

The aim of this article is to develop a simplified method for modeling cable-pulley deployment
systems of rod structures based on the calculation of cable tensions and nodal driving forces with
account for friction and other features of the system.

Methods of theoretical mechanics, multibody dynamics, numerical integration of differential
equations, and computer modeling were used during the research.

The task of developing a simplified approach to modeling cable-pulley deployment systems for
rod structures is considered. It is proposed to determine nodal driving forces by calculating cable
tensions with account for friction and other features of the cable-pulley system, cables, and pulleys.

To develop a model of cable-pulley deployment system, a rod system was chosen as the research
object, which represents two sections of the transformable support truss of a reflector. Each section
consists of diagonal and horizontal rods with tubular cross-sections. The sections are interconnected
by hinge units. The structure is deployed using an upper and a lower cable, which pass through pul-
leys and are tensioned by an electric motor. The deploying forces are implemented by transferring the
cable tension forces to the structure due to static friction and pressure between the cables and the
pulleys. For further implementation of the model in an open-source software package, some simplifi-
cations were made due to the complexity of the design.

A simplified method was developed for nodal driving force calculation in simulating rod struc-
ture deployment with the help of cables. The tensions, elongations, slacks, and neutral length of the
cables and the forces transmitted from the cables to the pulleys were calculated as a function of time.
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Using them, the deployment of a rod structure was simulated for a constant cable speed. The results
make it possible to control the rod system deployment time and rate depending on the characteristics
and tension forces of the cables.

The proposed approach is implemented using open-source software, and it provides modeling
flexibility and reduces the model development and run time.

Keywords: cable-pulley deployment system, transformable structures, multibody dynamics, open-source
software, flexible rod.

Introduction. Structures with significant spatial dimensions, such as antennas
[1] and booms [2], have been used for space applications. Due to the fact that the
space under the fairing of the launch vehicle is limited, such structures are
launched into orbit in a stowed state. Before operation they are deployed in such a
way as to form the desired in-orbit configuration. But, unfortunately, there are
known cases of abnormal deployment of such structures, which are primarily relat-
ed to the complexity of the structures themselves and the difficulties of conducting
full-scale experiments under the conditions of Earth's gravity. The listed features
encourage engineers and researchers to increasingly use mathematical and com-
puter modeling methods to analyze similar structures.

Space structures can be implemented in the form of rod systems connected by
hinges, which are deployed using cable-pulley systems.

The model of the Astromesh antenna was developed in Ref [3] using the its
representation as a system of flexible bodies, where special attention was paid to
the formulation of the cable-pulley system with friction based on Lagrange-Euler
elements (ALE). This modeling method significantly reduced the number of gen-
eralized coordinates and made full-scale simulation of antenna dynamics possible.

In the article [4], the model of the flexible dynamics of the reflector is devel-
oped using the absolute nodal coordinate formulation (ANCF), which leads to a
constant mass matrix without centrifugal and Coriolis forces. Then, this model is
applied to simulate the phenomena of non-synchronous deployment of the reflector,
taking into account the flexibility of the structure and the degradation of driving
forces from the cable-pulley system. Simulation results show that non-synchronous
deployment can increase the load on the struts of the reflector support ring.

The authors of the article [5] showed that the antenna deployment process is
asynchronous because of the effect of degradation of the driving forces of the de-
ployment cable system caused by pulley frictions. In addition, a significant growth
of strain in the final stage greatly affects the smoothness of deployment. The phe-
nomenon of non-synchronous deployment due to the structure flexibility and
damping of the forces of the cable system was studied in Ref. [6]. The results show
that this phenomenon can increase the stresses in the ring truss, which should be
taken into account when designing the truss.

In work [7], the movement of active sliding cables is considered as kinematic
constraints of the system from the point of view of multibody dynamics, and the
general model of the structure deployment is created using differential algebraic
equations (DAE). The proposed method is used to build a new control strategy for
solving more general problems of deploying structures with fewer actuators.

Full-scale deployment simulation of space structures using cable-pulley sys-
tems is known to be challenging, as traditional contact-based methods require a
fine mesh for the cables, a large number of contact detections, and integration with
small steps [8, 9].

The authors of the article [10] proposed a new method of modeling systems
made of cables and pulleys, which is based on dividing the cable into two seg-
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ments: non-contact and contact ones, depending on which part of the rope is in
contact with the pulley. The contactless segment consists of variable length ele-
ments based on ALE. The contact segment is considered an invisible segment in-
tended to limit the variable length cable element on the pulley; its limit is dynami-
cally determined by the relative configuration between the pulley and the cable.

On the basis of the dynamic analysis of the deployment of the AstroMesh an-
tenna, a method for optimizing the strategy of winding the cable is proposed in
Ref. [11]. Considering the effect of the cable properties and friction, the driving
force for deployment is derived according to energy conservation. An optimization
model was built with the aim to minimize driving power during the deployment,
using the calculation variables consisting of the control parameters of the cable
winding length curve.

Taking into account the above-mentioned difficulties, it is urgent to develop a
simplified method for modeling cable-pulley deployment systems for rod struc-
tures, which allows obtaining analytical expressions for determining the driving
forces and increasing the efficiency of calculations.

The aim of the article is to develop a simplified method for modeling cable-
pulley deployment systems for rod structures, which is based on calculation of the
cable tensions and nodal driving forces, taking into account friction and other fea-
tures of the system.

Problem statement. Two sections of the transformable reflector support truss
were chosen as the object for the study. Each section is formed from diagonal and
horizontal rods with tubular cross-section. Sections are interconnected by hinged
units (Fig. 1).

a) b)
Fig. 1 – Transformable structure (a – stowed state, b – deployed state)

The diagonal rods are connected in such a way that the rotation hinge provides
rotation of one diagonal relative to the other. The upper and lower horizontal rods
are connected to each other with the help of V-folding jounts, which ensure the
transformation of the horizontal rods. Diagonal and horizontal rods are connected
to each other with the help of hinge units.

The structure is deployed using an upper and lower cable passing through a
system of pulleys and tensioned by an electric motor. The driving forces are ap-
plied to the structure by transferring the cable tension due to static friction and
pressure between the cable and the pulleys. To simulate the deployment of the
structure, it is necessary to determine the driving forces with which the cable acts
on the corresponding pulleys in the hinge nodes, which lead to the movement of
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the horizontal rods of the V-folding assembly. The approach for solving this prob-
lem are presented below.

Model of rod structure. The ANCF is used to model the rod structure. The
ANCF method uses slope vectors to parameterize the orientation of the rod cross
section instead of the rotation parameters. The orientation of the cross-section of
the rod is described using conventional linear interpolation, and displacements
along its axis are interpolated using linear shape functions. The slope vectors are
derivative vectors with respect to the reference frame of the scaled linear base el-
ement. The definition of elastic forces is based on the Saint–Venant–Kirchhoff
solid medium formulation, using the relationship between the nonlinear Green-
Lagrange strain tensor and the second Piol–Kirchhoff stress tensor.

The geometry of the elastic rod element is defined by two nodes with slope
vectors at each node and position. The degrees of freedom of the i-th node of the
element are nodal displacements and variations of slope vectors. Each node has
nine degrees of freedom, so a two-node linear rod element has the following 18
degrees of freedom

 T(i)T(i)T(i)T(i) uuuq  , (1)

where (i)u is the nodal displacement, and (i)u , (i)u are the slope vectors.

A flexible rod element is described by means of position vectors )(ir , )(ir 

and two slope vectors )(ir  for each i-th node.
The hinge units that connect the sections together are modeled as several revo-

lute joints connected to each other by ordinary rigid elements. For modeling, the
main properties of these hinge assemblies are the stiffness, location and direction
of the axes of rotation of the hinges.

The center of gravity of a rigid element is determined by the position vector in
global coordinates, and serves as the reference point for specifying local coordi-
nate values. A universal, adjustable hinge is used to model the V-folding joints that
connects the horizontal rods. This hinge connects two bodies together and makes it
possible to constrain 6 relative degrees of freedom, namely, movement along three
axes of the local coordinate system of the connecting bodies and rotation around
these axes. The constrain equations for this type of joints have the following form:

0)( 21  xxAT , (2)

where 1x , 2x are the positions of the connection points in global reference frame

on bodies 1 and 2, respectively; )( i
z

i
y

i
x eeeA  is the rotation matrix from the

local coordinate frame of the hinge to the global coordinate frame.
Each equation in system (2) corresponds to a constrained direction, so if all

directions are constrained, it simplifies as follows:

021  xx , (3)

because 00)( 2121  xxxxAT .
If all rotational degrees of freedom are constrained, the equation of rotation

has the following form:
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For cases when the rotation is not limited around one of the axes, equation (4)
takes the following form:
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for x, y, z axis, respectively.
The diagonal rods are connected to each other with the help of revolute joints,

which limit all relative degrees of freedom between the two bodies, except the ro-
tation around a local axis. The revolute joint is equivalent to a universal hinge in
which all degrees of freedom are limited except for rotation around the local x-
axis. Also, the revolute joint is used to connect horizontal and diagonal rods to the
hinge assemblies. Rigid bodies are connected to each other by means of fixed
joints, which constrain all degrees of freedom of the element in a defined local
position. The fixed joint is equivalent to a universal hinge with all degrees of free-
dom constrained.

The folding sections are attached to a vertical rod, which is modeled by the
same elastic beam element as the section rods, but with a larger diameter and
cross-section. The vertical rod is connected to the hinge units of the first section by
means of a rigid joint at the upper node and a sliding joint in the lower node. The
sliding join ensures the movement of a point of one body along the longitudinal
axis of the second body. The vector of degrees of freedom of the sliding joint (6)
contains the sliding parameter, its time derivative, and the vector of Lagrange pa-
rameters. The first three Lagrange parameters represent the sliding forces in the
global coordinate system, and the last three parameters are the sliding torques
about the axes of the global coordinate system.

 654321  ssq  . (6)

Position vectors have the following form (7):
Tiiii xxxx 



 321 ;

Tjjjj xxxx 



 321 . (7)

During initialization, the unit vectors of the global reference frame are trans-
ferred to the local frames of each body, thus vectors iii vvv 321 ,, for the first body

and jjj vvv 321 ,, for the second body are obtained. Equations of displacement and
acceleration constraints, respectively (8), have the form:
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where ji rr , are the position vectors of the i-th and j-th bodies.

The dynamic model of the structure is obtained based on ANCF, taking into
account the kinetic and elastic energies of the rods. The method of Lagrange mul-
tipliers is used to take into account the constraints. Finally, the model of the entire
system is presented as a system of differential and algebraic equations as follows:

)(),( tVФtXCXM T
X  ,

0)( ХФ ,
where X is the state vector; M is the mass matrix; ),( tXC is the vector repre-
senting the stiffness of the system;  tV is the vector of non-conservative general-
ized forces due to the action of the deployment system;  is the vector of La-
grange multipliers .

Model of the cable-pulley system. The deployment cable system is modeled
to determine the driving forces with which the cable acts on the corresponding
structural elements. The static friction and pressure between the cables and the
pulleys are used to transmit the cable tension to the nodal forces deploying the
structure, as shown in Fig. 2.
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Fig. 2 – The directions of forces acting during deployment
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Fig. 3 – Model of V-folding rods

It is known that friction in pulley bearings decreases the cable tension. Taking
this into account, the tension of adjacent sections of the cable can be given as fol-
lows:

i
j

i
j

i
j TT 1 for 2,1j ; i

j
i
j

i
j TT 

1
2 for ,2,...,1,3  ij (9)

where i
j is the tension decay factor for j -th pulley i -th section, and i

jT is the ten-
sion force of the cable segment before j -th pulley i -th section.

The friction torque M occurs when a pulley rotates of around its bearing. Ac-
cording to the classical empirical Palmgrem equation, the magnitude of the friction
torque can be expressed as:

mdFfM  1 , (10)

where 1f is a constant coefficient, F is the synthetic load, which for the ball bear-
ing will be equal to the radial force rF . Since all bearings in the structure are the
same, pitch-circle diameter of the bearing md is also a constant. Then equation
(10) can be written as follows:

rfFM  , (11)

where mdff 1 is a constant coefficient.
According to Newton's second law and the momentum theorem, the dynamics

equation of the pulley can be written as:

01   cpr
i
j

i
j amFTT , (12)

0
2
1 2

1 


  dt

d
RmMTRTR p

i
j

i
j , (13)
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where ca is an acceleration of the centroid of the pulley, pm is a mass of the pul-
ley, M is a friction moment on the pulley,  is an angular velocity of the pulley
andR is the radius of the pulley.

Given that the mass and diameter of the pulley are small, so its influence can
be neglected. Compared with the driving force, equation (12) can be reduced to:

01   r
i
j

i
j FTT . (14)

Since R and dtd also small, quadratic term R can also be omitted, and
then equation (23) can be rewritten as:

01   MTRTR i
j

i
j . (15)

From equations 14 and 15, we can get:

i
j

i
j

i
j

i
j

i
jr TTTTF   cos2 1

2
1

22 , (16)

  01   r
i
j

i
j fFRTT , (17)

where i
j is the angle between adjacent segments of the cable.

Then, using equations (16) and (17), the driving force equation can be ex-
pressed as:

  0cos2 1
2

1
2

1  
i
j

i
j

i
j
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j
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j

i
j

i
j TTTTfRTT . (18)

Using the results from Ref. [6], the tension decay factor can be determined as
follows:

 
 2cos

2cos
i
j

i
ji

j
fR

fR




 . (19)

Assuming that at each time moment the angles i between the V-folding rods

are known and taking into account the model shown in Fig. 3, the angles i
j can be

found as follows:
11

1 2  ;

ii
j  2 , 2j , 2,1i ;

ii
j  , 3,1j , 2,1i ;
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where l
~

is the length of the equivalent V-folding rod; h is the distance between
the rotation axis of the pulley on the V-folding rods and the conditional point of V-
folding of the rods.

Taking into account the model presented in fig. 3, the distance h can be found
as follows:

  22sin 1 iHh   , (21)

where is the angle between the V-folding rod and the hinge element of the V-
folding rods; H is the length of the hinge element of the V-folding rods.

i
j
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j
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j LLEAT  , i

j
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j

i
j

i
j LLEAT 1 , (22)

E is Young's modulus of the cable, A is the area  of the cable cross section, i
jL is

the neutral length of the cable segment, i
jL is the elongation of the cable span.

The elongations of the cable spans can be given as follows:
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The total elongation of the cable can be obtained as the sum of the elongations
of all cable spans of the system:
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Knowing the length of the cable wound on the winch wL the elongation of
the first cable span can be found as follows:
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w
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i j i j
i
j

i
j

LLL

LLLLLL
(26)

where 0L is the neutral length of the cable at the initial moment of the deployment.

The neutral length of the cable spans iL1 does not change during deployment.
The neutral length of other segments can be determined as follows:

     212 22sin ii
j HtglL   , (27)

where l is the length of the V-folding rod.
After finding the elongation of the first span of the cable 1

1L using equation
(14), the tension on this span can be found using expression (11). Equations (9) allow
us to determine the tensions of other cable spans. After that, the equivalent forces
acting in the corresponding nodes of the structure are determined as follows:
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 TTTTF 11
2

1
1

11
2

1
1 sin;cos;0  , (28)

 TTTTF 22
2

2
1

22
2

2
1 sin;cos;0  , (29)

    Tiiiiiii TTTTF  sin;cos;0 32322 , (30)

 Tiiiiii TTTF   sin;cos;0 3
1

133 . (31)

Simulation results. The deployment of the considered structure was simulat-
ed using the models derived in Sections 4, 5 and the initial data presented in Table
1. The models were implemented using the open source software package HotInt
[20].

The length of the cable wound on the winch varies as follows

tLw 01.0 , (32)

where t is the simulation time.
Figure 4 shows variations of the neutral lengths of the cables in the spans be-

tween the first and second pulleys. When the cables are being wound using the law
(32), the they may sag (Fig. 5) and lose their tensions (Fig. 8) on some time inter-
val. Figures 6, 7 demonstrate the variations of the cable tension decay factors dur-
ing deployment. Figures 9, 10 show the dependences of the equivalent forces of
the first and second pulleys of the second span over time, which lead to a change
in the angles between the V-folding rods shown in fig. 11. As can be seen from the
last figure, the considered cable winding law ensures the complete deployment of
the structure in approximately 35 seconds.

Fig. 4 – Variations of the neutral lengths
of the cable spans between the pulleys

Fig. 5 – Variation of cable elongation

Fig. 6 – Variation of the tension decay
factors for the first section of the structure

Fig. 7 – Variation of the tension decay factors
for the second section of the structure



13

Fig. 8 – Variations of the cable tensions Fig. 9 – Variation of the equivalent force on
the first pulley

Fig. 10 – Variation of the equivalent force
on the second pulley

Fig.
11 – Variation of the angles between the V-
folding rods

Conclusions. The article presents a model of the rod structure deployed by
means of a cable-pulley system. A simplified method for modeling cable-pulley
deployment systems has been developed, which allows calculating the cable ten-
sions and nodal driving forces taking into account friction and other features of the
system. The results of the calculations show that if the cable is wound at a constant
speed, it can significantly lose tension or even sag at a certain time interval. Aa a
result of this behavior the cable can lose contact the pulleys, which can lead to de-
ployment failures. To eliminate the possible of sagging of the cables, they can be
wound at a variable speed, using the obtained dependencies to determine the tension
of the cable based on measurements of the angles between the folding rods. The de-
velopment of such control algorithms may be the subject of further research.
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