YK 629.78 https://doi.org/10.15407/itm2022.01.026
A.P. ALPATOVY, VIK. V. KRAVETS, VOL. V. R KRAVETS?, E. O. LAPKHANOV!

VERIFICATION OF ANALYTICAL ANTIDERIVATIVES FORMS USING
CORRELATION ANALYSIS FOR MECHANICAL PROBLEMS

Lnstitute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of
Ukraine, 15 Leshko-Popelya St.., Dnipro 49005, Ukraine; e-mail: ericksaavedralim@gmail.com
2 Department of Mechanics, Dnipro State Agrarian and Economic University,
25 Serhiy Yefremov St, Dnipro 49000, Ukraine.

AHaniTUYHWIA NOLWYK NepBiCHUX (DYHKLA (HEBM3HAYEHMX IHTErpanis) LUMPOKO BUKOPUCTOBYETLCS B MaTe-
MaTUYHOMY MOAENIOBAaHHI Pi3HOMAHITHUX TEXHIYHUX, EKOHOMIYHUX, EKOMOTiYHUX, BI0NOTiYHUX, coLianbHUX Ta
iHLUMX NpoLeciB. Y CBOIO Yepry, B 3afja4ax MexaHiku € 3Ha4HWiA Knac nifsagad, npy po3s’a3aHHi SKNX BUKOPUC-
TOBYIOTbCA aHaNiTMUHI MeToAM iHTerpyBaHHs. [1o Luux 3agay TakoX BigHOCMTbCSA nMpob6ieMa po3pobkn aHaniTMy-
HMX Mofeneil HaBiraliliHo-6anicTUYHOrO 3abe3neyeHHs Ta MoJeneil Teopii KepyBaHHS B ray3i pakeTHo-
KOCMiYHOT TexHiku. [NepeBaroto Lboro nigxo4y B MaTeMaTU4HOMY MOAENIOBAHHI € MOX/IMBICTb LLIBUAKOIO aHani-
3y CTaHy AMHaMIYHUX CUCTEM Ha Pi3HUX YacoBMX iHTepBasiax 6e3 po3paxyHKiB BCiX NonepeaHixX CTaHiB.

Y cBOIO Yepry, ANs AesKWUX KnaciB (PYHKLi iCHYe KiflbKa Pi3HKX BapiaHTIB NOLWYKY NepBiCHUX, Y pesynbTa-
Ti 4Oro iCHYe KinbKa pi3HUX (hopM NepBICHMX, SKi BXKO NEPeBipUTM KNacUyHMM CNoco6oM Yy CTaHAapTHIN top-
Mi. B 0CHOBHOMY Lie NOB’A3aHO 3 BUGOPOM Pi3HOMaHITHUX KOMGiHaLi/i METOAIB iHTErpyBaHHSA, SKi BUKOPUCTOBY-
0TbCA NPY PO3pO6LI aHaNI TUYHKX MoAenel, 30KpeMa B 3aadax NpUKIagHOT MexaHiku.

BpaxoBytoun 3a3HayeHi CKnagHoLLi BepudikaLii MHOXMHU MepBiCHUX (YHKLIT, y poboTi NponoHyeTbCs
METO/, 3aCHOBaHWA Ha BUKOPUCTaHHI KOpenauiiHoro aHanisy fns nepeBipkM BiAMOBIAHOCTI iX aHaniTMYHMX
thopMm. Mpy LLOMY MACUBM 3Ha4eHb KOXHOI NepBiCHOI hopMy PYHKLT Y NEBHUX BY3M0BUX TOUKAX MPOMOHYETLCS
npeacTaBuTV Y BUTNAAI Habopy BUNAAKOBUX BENMYMH. 3 Ornsdy Ha Lie, NpoLiec BepudikaLii NponoHyeTsCA npo-
BECTU 3a AOMOMOroH CTaHAapTHOrO MiAXOAY, 32aCHOBAHOrO Ha KopensauiiHoMy aHanisi (i3 3acTocyBaHHAM Koedi-
LieHTy kopenauii MipcoHa). EeKTUBHICTL MeTOAY MoKasaHa Ha NpuKnagdi nepesBipku NepBiCHUX pauioHanbHOT
(hyHKUIT 3 KBagpaTHUM TPUUNEHOM, SKWIA NigHECEHO [0 KBaapaTy, B 3HAMEHHMKY. Takwii nigxig gactb 3mory
nepeBipuTN afleKBaTHICTb 3HAXOMKEHHS i-r0 BapiaHTy MNePBICHOI (DYHKLIT MHOXWHI HasBHUX MepBiCHUX Liel
(hyHKLT Ta aganTysaTu 3afjady 40 CTaHAapPTHOIO BUTNAAY.

KntouoBi cnoBa: nepeicHa, MeTOA BepudikaLlii, KopensuiiiHuii aHanis, aHani TU4YHa MOZENb, MexXaHika, iH-
TerpyBaHHs.

An analytical search for antiderivative functions (indefinite integrals) is widely used in the mathematical
simulation of various engineering, economic, ecological, biological, social, and other processes. In their turn,
mechanical problems have many subproblems whose solution involves analytical integration methods. Among
these problems is the problem of development of analytical models for navigation and ballistics support and con-
trol theory models in space rocket engineering. The advantage of this approach to mathematical simulation is a
fast analysis of the state of dynamic systems on different time intervals without calculating all previous states.

In their turn, for some classes of functions, antiderivatives may be found in several different ways, as a re-
sult of which there exist several different forms of antiderivatives that are hard to verify by the classical method in
standard form. This is mainly due to the choice of various combinations of integration methods used in the devel-
opment of analytical models, in particular in problems of applied mechanics.

Taking into consideration these difficulties in the verification of the set of antiderivative functions, this pa-
per proposes a method to check their analytical forms for correspondence with the use of correlation analysis. In
doing so, the arrays of the values of each antiderivative form at certain nodal points are represented as a set of
random variables. With this in mind, it is suggested that the verification process be conducted with the use of the
standard approach based on correlation analysis (using Pearson’s correlation coefficient). The efficiency of the
method is shown by the example of verifying the antiderivatives of the reciprocal of a squared quadratic trinomial.
This approach will make it possible to check the adequacy of the i-th candidate antiderivative and to adapt the
problem to the standard form.

Keywords: antiderivative, verification method, correlation analysis, analytical model, mechanics, integra-
tion.

Introduction. Mathematical modeling of dynamic systems and processes is a
key stage in the study of various phenomena and laws of nature, technical objects,
biological, economic, social systems, etc. Usually, such systems and processes are
modeled using the theory of ordinary differential equations (ODES) [1 — 3] (me-
chanical systems, economic systems, physical processes, biological systems, etc.),
difference equations (an alternative to modeling systems using ODEs in case of
determined dynamics of changes in system parameters with time) [4, 5], Fourier
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series (time-periodic systems) [6, 7], the theory of infinitesimal calculus (piece-
wise continuous functions in moving control systems) [8, 9] and the theory of
functions of a complex variable (AC circuits) [10]. In turn, when using the above
mathematical apparatus, the theory of integral and differential calculus is used to
find the solution (finding the coefficients of Fourier series, analytical solution of
ODEs, etc.) [11, 12].

In turn, in the tasks of the field of rocket and space technology, the study of
dynamic systems is one of the key issues [13 — 16]. Thus, modeling of spacecraft
orbital and angular motion is often modeled using the ODE theory. So, using com-
puter modeling in dynamic’s and ballistic’s problems, numerical methods are often
used: for ODEs (ODE systems) (Euler, Runge-Kutta, Adams-Bashfort, Adams-
Multon, Everhart, etc. methods), for numerical integration (formulas of rectangles,
trapezoids, Simpson, etc.) [14]. However, with large limits and a small integration
step, numerical methods require a significant number of integration steps in a cy-
cle, which can significantly overload computing systems. Taking this into account,
it is most expedient to search for analytical or numeric-analytical solutions if this
possible. The use analytical or numeric-analytical can reduce the load on compu-
ting systems, which in turn will increase their performance. In this case, the devel-
opment of mathematical models is carried out taking into account the use of tradi-
tional analytical methods of integration and differentiation [11, 12].

Problem statement and algorithm description Analytical integration is real-
ized by finding the antiderivatives of functions. In turn, antiderivative of the func-
tion f (x) on a certain interval is called a function F (x) if it is continuous, dif-

ferentiable and satisfies the condition [17] on this interval:

F'(x)=f (x), orto the equation

dF (x)=1 (x)dx. @)

Given this, the indefinite integral is a family of antiderivatives of a function
that differs by a parameter: the constant C . This is written as follows [11, 12, 17]:

Jf(x)dx:F(x)+C . 2

In turn, there are a number of functions that have different forms of antideriva-
tives depending on the chosen integration method. The correctness of finding such
antiderivatives is rather difficult to identify in the standard form (2).

So, if the values of each function will be presented as arrays of data the statis-
tical methods of verification can be used. The technique of absolute and relative
errors usage for data validation is presented in the papers [18, 19]. Using this
methodology for verification of antiderivatives forms should be based on the con-
stant values of relative error in determined nodal points. In turn, this methodology
is most suitable for verifying two analytical solutions. However, the usage this
methodology requires significant number of nodal points which complicates the
verification procedure. This is especially necessary for the verification of the ana-
lytical forms of antiderivatives with the results obtained by numerical integration
(where the integration error depends on the features of the numerical method it-
self). Also, according [18], the use of the technique of data verification by calcu-
lating the relative error has limits in estimation of functions with near-zero values.
In turn, the use of correlation analysis allows to consider the behavior of a function
on a certain interval, taking into account estimates of the relationship with the var-
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iables of the compared function. This greatly simplifies the verification process
and avoids the difficulties that arise when using methods [18, 19].

Proceeding from this, the paper proposes a method for verifying the forms of
antiderivatives of a function using correlation analysis. In this case, the values of
each of the antiderivative functions at certain nodal points are represented by sets
of random variables. Further, for the i -th antiderivative F; (x), which needs to be

verified, the mathematical expectation M[Fi (x)] and standard deviation
c[Fi (x)] are calculated. After that, it is calculated the value of the mathematical
expectation M| F; (x)] and the standard deviation o[ F; (x)] of the antideriva-
tive function F;(x) (obtained numerically, analytically, or numerical-
analytically), with which F; (x) is compared. Then, the mathematical expectation
of a two-dimensional random variable M[F,. (x),F; (x)] created by the values at
the nodal points of the functions F;(x) and F;(x) is calculated. In turn, the
number of nodal points of F; (x) and F; (x) must be strictly the same and for the
same values of the input arguments x of these functions. After that, the correla-
tion coefficient (Pearson’s correlation coefficient) is calculated as follows [20, 21]:
M[F;(x),F;(x)]-M[F; (x)]-M[ F; (x) ]
o(F,(x))-o(F; (x))

N N
ZFZ' (xn) ZFj(xn)

M[Fi(x)]z—nZI N ) M[Fj(x)]=—n:1 N )

r(F;(x).F;(x))=

i(ﬂ (%)~ M[F; (x)])’

G[Fi (x)]: il N )

M=

(F; (x,)-M[F (x)])2
G[Fj (x)]: ! N !
N
> Fi(x,) F;(x,)

M[F; (x)F; (x) | =2 ~ ,

S
]

@)

X, <X Xy,

where N is the number of nodal points; x

tives verification interval.

In turn, the accuracy of the method depends on the number of selected nodal
points N in a given interval, as well as the length of the verification interval it-
self. Also, in the case of comparing two antiderivative functions that have an ana-
Iytical form, the calculation of mathematical expectations and variances can be
carried out as for continuous random variables in the following form [21]:

x; are the borders of the antideriva-

a’
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K[F,;(x).F;(x)]
o(F;(x))-o(F;(x))’

r(F,(x).F;(x))=

M[F; (x)]= inFi (x)dx; M[Fj (x)]: jijj (x)dx;,

o|F; (x)]=\/f (xl- -M[F; (x)])2 F; (x)dx; ,
2 @

of F; )] J J (e =ML @) Fy (o
K[F@)F; @)= MLF; @)))(x; = M[F; @) )Py oMy

X,

>
K

R

aa

where K [ F; (x),F; (x)] is covariance; F, ; (x;,x;) is distribution function of a
two-dimensional random variable.

Lema 1. Thus, taking into account (3) and (4), the necessary and sufficient
condition for the antiderivatives full correspondence to each other is the equality
of the correlation coefficient r(Fi (x).F; (x))=1. In this case, if the function

values F;(x) will increase or decrease by a certain amount, then the function
values F; (x) will increase or decrease by the same amount, which correspond to

the definition (2). In turn, if the r (F; (x),F;(x))<1 it can be concluded that

obtained form of antiderivative corresponds to other forms of the function’s anti-
derivatives with a certain degree of confidence.

Estimation of algorithm implementation. Let's consider a function

y(x)=

ﬁ . S0 y (x) is arational function whose denominator is a square
(x“+a”)
trinomial (for A =1,B =0,C :az) raised to the second power. Functions of this

type are often encountered in the description of automatic control systems for spe-
cial ODE’s right-hand sides whose inverse Laplace transform has the form

f@)= (sm ot —ot cosot ), ®>0. Also, y (x) can be included in the ODEs

right- hand sides, whose inverse Laplace transform has the form f ()=t coswt ,

®>0. In turn, in some cases, it is necessary to directly integrate the Laplace s-
domains (by applying the Laplace s-domains integration theorem). Such cases can

f()

be finding Laplace s-domains from functions of type g ()= , when searching

for an analytical solution for more convenient adaptation of mathematical expres-
sions to machine language. This is often necessary when developing software
without using application packages with built-in operational calculus libraries
(such as Matlab, Scilab, MathCad and their analogues).
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Thus, the first variant of the analytical finding of the antiderivative for
y(x)zﬁ is the use of the well-known recursive formula [12] of the
(x“+a”)
type:
1 x . 2k -1 I
2ka® (x%+a®)*  2ka® i ()

Iyg=

keu.

1 L 1
where Ik+1 ZIWCZX ; Ik —J.mdx .
In this case £ =1 . Then, using formula (5), the expression for the function

1 . S .
y(x)= — first form antiderivative F;(x) can be written as follows:

(x“+a”)
dx 1 X 1 dx
F (x): = - —
! J.(x2+az)2 2a® (x2+a2) 2a2'[x2+a2 (6)
=L3arctan£+—2-%+c
2a a 2a° (x“+a%)

The second variant for finding the antiderivative for the function

1 . . . I
y(x)zﬂ is to use a trigonometric substitution of the form:
X" +a

x =a-tan(z), z =arctan (fj dx =+dz . Using this substitution, the in-
a cos”(z)

definite integral of the function y (x) takes the following form:

Fz(x)=f adz . z=arctan| X
2 2, 2 2\2 a
oS (z)-(a tan“(z)+a )
adz
cos’(z)-a*—
cos™(z)
1 9 1 r1+cos(2z) (7)
=—|cos*(z)dz = | ———"2dz =
leost @)z = [
1 in(22) 1 sin{Zarctan[xH
sin(2z x a
=——(z +——=%)=——arctan| = |+ +C .
2a3( 2 ) 243 (aj 443

Based on the obtained values of the variants of the antiderivatives F;(x) and
F,(x) for the function y (x), it can be seen that the values of the second terms
have different representations. In turn, according to the properties of the universal

i i 1)

443

trigonometric substitution [12], the expression can be reduced
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1 x

— In this case, it can be seen that the values of the antiderivatives
2a” (x“+a”)

F;(x) and Fy(x) are interconnected by the relations of the universal trigonomet-
ric substitution when using the integration methods (6), (7) and the use of correla-
tion analysis for verification is optional.

In turn, if apply the method of two substitutions, it can be obtained another
form of the antiderivative for functions of the type y (x). So, when use the substi-

. . +dt
tution 1 for the function y (x): x2+a%=t, x =+\t —a?, dx =———

24t -a? ,

finding of the antiderivative is reduced to the form:

1 dt s 9
Fy(x)=t=|—F—, t=x"+a". (8)
2It2\/t —a?
Further, use the substitution 2: ¢ =l, m =l, dt =—d—n; expression (8) is
m t m

reduced to the form:

1 Jmdm 1
Fo(x)=F= | —, m= .
3( ) 2‘[ /71_ma2 x2+a2

Multiplying the numerator and denominator by Jm , expression (9) can be
written as follows:

(9)

F(x)—ilj—mdm m= 1
’ 2 \lm—mzazl .’)(?2+(l2

The antiderivative of this expression has the following form:

F3(x)ziljﬂ:
2 \/I?’L—T’I’Lza2

zi% m—m2a2i%arcsin(zma2—1>+0, m= 21 R
2a 4a x“+a
or in final form:
2 .2
Fy(x)= 12 2x 5 F 13arcsin a2 x2 +C,
2a° x“ +a” 4a a“+x
— if x>0, , (10)
+ if x<0,
_[Cy i x>0
|y, if x<o.

where C; and C, are the constants of integration on first and second intervals

depend of sign.
It can be seen from the obtained result that the form of the antiderivative func-
tion Fg(x) has significant differences in the second term, both in form and in

sign, from the second F;(x) and F,(x) terms. In turn, verification by analytical
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methods can be quite cumbersome and lead to additional errors. Thus, in this case,
it is advisable to apply a verification method based on correlation analysis.

Based on the Lema 1, let's determine the verification conditions for the anti-
derivatives F;(x), Fy(x) and Fg(x) of the considered function y (x) on a cer-

tain interval [x;,x,] in the following form:

r(Fy(x),Fy(x))
r (Fl(x)vF3(x))
r(FZ(x),F3(x))

X1 <x <X,

1
L (11)
1

For a numerical experiment, let’s take for example the a value of function

y(x):ﬁ equal to 10. Then, the values of antiderivatives F;(x),
+a

F,(x) and Fg(x) will be have the next form:

Fi(x)= L ad + ! arctan(i}rc,
200 (x2+100) 2000 10

sin| 2arctan (xj
{ 10

4000

+C,

Fy(x)= Larctan (ij +
2000 10

.2
Fy(x)= L X F arcsin| ——>_ |+C.
200 (x2+100) 4000 100+ x2

Lets set the constants C =0 for F;(x), Fy(x) and
C,=0.0007854,C, =0 for Fg(x). Then using the open-source package of
mathematical applications SciLab carry out the verification of these antideriva-
tives. To do this, let's take a breakdown interval [x;,x,] from -50 to 50 witha
step of 0.001 and build graphs of all three antiderivatives (Fig. 1) at a =10.

~
%
N
LL 0-001
0.0005 -
0 -
F3(x)
-0.0005 A
F1.2(x)
-60 -40 20 0 20 40 60 X

Fig. 1 — The graphs of antiderivatives F;(x), Fy(x) and F3(x) of the function y (x)
on the interval x =[-50,50] at a =10
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It has been determined that if C; and C, of the antiderivative function
F3(x) have wrong values, F5(x) suffers a discontinuity of the first kind (jumps)

at the point x =0, which does not satisfy condition (1). In this case, the function
Fg(x) cannot be fully called the antiderivative of y(x). In turn, if

C,=0.0007854 and C,=0, the correlation coefficients are equal
r(Fy(x),Fs(x))=r(Fy(x),F5(x))=1.0, which satisfies condition (11) (fig.1).

Thus, the proposed verification method made it possible to fully assess the
correspondence of the forms of the antiderivatives of the function y (x) to their

direct definition (1). Also, if function has any different constants depending on the
interval as Fg(x), the correlation methodology helps to determine these constants

correctly. It is also established that when applying various integration methods, the
properties of the antiderivative may change.

Discussion. The use of the modern computer technology power in the applica-
tion of the proposed method makes it possible to quickly verify the analytically
found form of the antiderivative function to its other forms. In turn, if there are less
than two such forms, then it is advisable to carry out verification with the expan-
sion of the function in a Maclaurin (Taylor) series on a given interval and with
integration values using numerical methods. The approach of representing func-
tions describing perturbative influences by the series is especially often used in the
analysis of spacecraft dynamics [15, 16, 20]. In this case, taking into account the
calculation error when using one or another numerical method, as well as the de-
gree of expansion of the original function in the Maclaurin series, the application
of the proposed verification method may not give an absolute correlation even in
the absence of calculation errors. So, for example, let's expand the function

y(x)= 5 in a Maclaurin series up to the 8th degree and integrate. The

1
(x% +100)
expansion has the following form:

B y'(0)  y"(0) » yP0)  y®0) 5
y(x)—y(O)+Tx+Tx + .t T x'+ 3 x° = |
1 2 o, 72 4 2880 5 201600 g

100> 1003 24.100* 720-100° 40320-100°

By directly integrating, it will be got:
1 2 3 72 5 2880 7 201600 9
= 3 X — 3 X+ 1 X — 5 X + 6 X .
100 3-100 120-100 5040-100 9-40320-100

Let's plot graphs (Fig. 2) and carry out a correlation analysis of the antideriva-
tives F;(x), Fy(x), and the integral of the Maclaurin expansion Y (x) of the

Y (x)

function y (x) = on the interval x =[-10,10].

(x2 +100)?
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-0.0002

-0.0004 Fl,Z(X) ’

0.0006]__ ="
-0.0008 Y(X)

-0.001

0 9 8 -7 6 5 4 3 -2 -1 0 1 2 3 4 5 6 7 8 9 1OX
Fig. 2 — The graphs of antiderivatives F; (x), Fy(x) and the integral of the Maclaurin
expansion Y (x) of the function y (x) on the interval x =[-10,10] at a =10

Thus, when wusing correlation analysis, it has been obtained
r(Fi(x)Y (x))=r(Fy(x)Y (x))=0.9947596. In turn, if the degree of expan-

sion in the Maclaurin series is increased to 14, the correlation will be 0.9951848.
In such cases, when using the proposed verification method, it is necessary to set
the confidence value of the correlation coefficient (according to Lemma 1), de-
pending on the required calculation accuracy, in which the found analytical value
of the antiderivative can be considered correct. This approach can be used to
search for analytical solutions to differential equations and their systems, the right-
hand sides of which are difficult functions. In turn, the chosen confidence value of
the correlation coefficient will affect the accuracy of calculations when using the
found analytical solution.

Conclusions. A method for verifying the analytical search for antiderivatives

using correlation analysis is proposed. On the example of finding antiderivatives
. 1 . e .

of a function y (x) =————=— and their further verification it has been shown

(x2 +a’2)2

the example of proposed method implementation. A numerical experiment using
the proposed verification method showed different properties of antiderivatives
1
(x2 +a2)2 '
Taking this into account, it is expedient to apply the proposed method of verifica-
tion of the analytical search for antiderivatives to difficult functions that have dif-
ferent forms of antiderivatives. Also, this method can be used to analyze the confi-
dence values of the accuracy of the found numerical, numeric-analytical and ana-
Iytical solutions for integrating various difficult functions, ODEs which are often
uses in different areas in mechanics.

depending on the chosen integration method for the function y (x) =

1. Teschl G. Ordinary Differential Equations and Dynamical Systems. American Mathematical Society (AMS),
2012. 353 p. URL: https://www.mat.univie.ac.at/~gerald/ftp/book-ode/ode.pdf (date of access 12.02.2022).
https://doi.org/10.1090/gsm/140

2. Perko L. Differential equations and dynamical systems, 3rd. ed. Springer-Verlag, New York. Inc., 2001. 555 p.
https://doi.org/10.1007/978-1-4613-0003-8

34



3. Chern I. L. Mathematical modeling and ordinary differential equations. Department of Mathematics National
Taiwan University. 2016. 216 p. URL: http://www.math.ntu.edu.tw/~chern/notes/ode2015.pdf (date of access
12.02.2022).

4. Tirelli M. Linear Difference Equations. 2014. URL:

http://econdse.org/wp-content/uploads/2016/04/linear_difference_eqg-LectureNotes-Tirelli.pdf (date of access
12.02.2022).

5. Neusser K. Difference Equations for Economists, preliminary and incomplete. 2021. 199 p. URL:
http://www.neusser.ch/downloads/DifferenceEquations.pdf (date of access 12.02.2022).
https://doi.org/10.3390/app12073604

6. Hegde U. S., Uma S., Aravind P. N., Malashri S. Fourier Transforms and its Applications in Engineering Field.
International Journal of Innovative Research in Science, Engineering and Technology. 2017. Vol. 6, Iss. 6.
P. 10294-10298. URL.: https://doi.org/10.15680/1JIRSET.2017.0606024

7. Serov V. Fourier series, Fourier transform and their applications to mathematical physics. Springer International
Publishing AG 2017. 2017. 534 p. https://doi.org/10.1007/978-3-319-65262-7

8. Keisler H. J. Foundations of infinitesimal calculus. Department of Mathematics University of Wisconsin,
Madison, Wisconsin, USA, 2011. 203 p. URL: https://people.math.wisc.edu/~keisler/foundations.pdf (date of
access 12.02.2022).

9. Alpatov A. P. Spacecraft dynamics. NPP Publishing House "Naukova Dymka", 2016. 488 p [in Russian].

10. Cohen H. Complex analysis with applications in science and engineering. Springer-Verlag US 2007, 2007.
477 p. URL: https://doi.org/10.1007/978-0-387-73058-5

11. Magnus R. Fundamental mathematical analysis. Springer Undergraduate Mathematics Series, 2020. 433 p.

https://doi.org/10.1007/978-3-030-46321-2

12. Myshkis A. D. Lectures on higher mathematics. 5th ed., revised. and additional, St. Petersburg: Publishing
house "Lan", 2007. 688 p. [in Russian]

13. Sergeeva Yu. R., Tuchin D. A. Algorithm for determining the analytical model parameters of the navigation
satellites motion. IPM preprints im. M.V. Keldysh. 2016. No. 109. 16 p. https:/doi.org/10.20948/prepr-2016-
109 URL: http://library.keldysh.ru/preprint.asp?id=2016-109 [In Russian]

14. Bordovitsyna T. V., Avdyushev V. A. Theory of Earth’s artificial satellites motion. Analytical and numerical
methods: Proc. allowance. Tomsk: Publishing House Tomsk Univers., 2007. 178 p. [In Russian]

15.Curtis H. Orbital Mechanics for Engineering Students (4th Edition). Butterworth-Heinemann. 2019. 692 p.

16. Fortescue P., Stark J., Swinerd G. Spacecraft systems engineering. John Wiley & Sons Ltd. Chichester, 2011.
724 p. https://doi.org/10.1002/9781119971009

17. Keisler H. J. Elementary calculus. An Infinitesimal Approach. Creative Commons, Stanford, California Second
Edition. 2000. 982 p.

18. Kat C.-J.,, Els P. S. Validation metric based on relative error. Mathematical and Computer Modelling of
Dynamical Systems. 2012. Vol. 18, No. 5. P. 487-520. https://doi.org/10.1080/13873954.2012.663392

19. Chen C, Twycross J, Garibaldi J. M. A new accuracy measure based on bounded relative error for time series
forecasting. PLoS ONE. 2017. No. 3. P. 1-23. https://doi.org/10.1371/journal.pone.0174202

20. Evans M. J., Rosenthal J. S. Probability and Statistics: The Science of Uncertainty. W. H. Freeman; Second
edition. 2009. 638 p.

21. Soong T. T. Fundamentals of probability and statistics for engineers. John Wiley & Sons Ltd. 2004. 391 p.

Received on February 15, 2022,
in final form on April 12, 2022

35



