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Об'єктом дослідження є мала орбітальна зв'язка двох тіл, яка повинна бути розгорнута з космічного
апарата таким чином, щоб після завершення розгортання вона була розташована вздовж місцевої вертика-
лі. Тіла зв'язки вважаються однаковими по масі; нитка, що з'єднує тіла, вважається невагомою. Мета про-
веденого дослідження полягає в тому, щоб побудувати програмний закон управління довжиною зв'язки,
що враховує зміну кінетичного моменту зв'язки під впливом гравітаційного моменту від центрального
ньютонівського поля сил. Проведено дослідження процесу розгортання космічної зв'язки двох тіл у полі
відцентрових сил з вирівнюванням зв'язки наприкінці розгортання вздовж місцевої вертикалі. Для розгор-
тання використовується попередня закрутка зв'язки довкола бінормалі до орбіти. Дослідження складаєть-
ся із двох етапів. У першому етапі проводиться побудова закону управління довжиною зв'язки, який за-
безпечує виконання запланованого розгортання. На цьому етапі використовуються рівняння руху зв'язки,
записані у сферичних координатах для часткового випадку руху зв'язки у площині орбіти. На другому
етапі дослідження проводиться чисельне моделювання динаміки розгортання зв'язки під дією побудовано-
го програмного закону управління довжиною зв'язки. Як математична модель зв'язки використовуються
рівняння Hill–Clohessy–Wiltshire, що описують просторовий рух тіл. Ці рівняння не містять у явному ви-
гляді довжину зв'язки як змінну. Тому рівняння модифікуються. Зусилля натягу зв'язки, що входить у ці
рівняння, виражено через програмний закон зміни довжини та двох його перших похідних за часом. Нови-
зна проведеного дослідження полягає у побудові програмного закону управління, що дозволяє розгорнути
зв'язку вздовж місцевої вертикалі за одну стадію. При виконанні дослідження використовувалися методи
аналітичної механіки, чисельні методи і методи, розроблені авторами. Отримані результати дозволяють
встановити області значень параметрів розгортання, що дозволяють проводити розгортання такого типу.
Проведено оцінку помилок чисельного моделювання. Практична значущість отриманих результатів поля-
гає у можливості проводити розгортання малих зв'язок на орбіті з вирівнюванням їх наприкінці режиму
вздовж місцевої вертикалі за одну стадію з управлінням по довжині зв'язки без необхідності проводити
надалі гасіння лібраційних коливань.

Ключові слова: управління, космічна зв'язка, розгортання, місцева вертикаль, одна стадія.

This study is concerned with a small orbital tether of two bodies to be deployed from a spacecraft so that
upon completion of the deployment it turns out to be aligned along the local vertical. The bodies of the tether have
equal masses, and the thread connecting the bodies is supposed to be massless. The objective of the study is to
build a program law of tether length control taking into account the variation of the angular momentum of the
tether under the action of the gravitational torque from the central Newtonian field of forces. The deployment
mode of the space tether in a centrifugal force field with its alignment at the conclusion of the deployment along
the local vertical is studied. To produce centrifugal forces, the tether is pre-spinned about the orbit binormal. The
study consists of two steps. The first step involves the construction of a tether length control law that would pro-
vide the planned deployment. At this step, use is made of the tether motion equations written in spherical coordi-
nates for the special case of the tether motion in the orbital plane. A numerical simulation of the tether deploy-
ment dynamics is carried out at the second step using the constructed program law of tether length control. Hill-
Clohessy-Wiltshire’s equations are used as a mathematical model of the tether. They describe the spatial motion
of the tether bodies. These equations do not contain the tether length as a variable in explicit form. Therefore,
these equations are modified. The tether tension force appearing in these equations is expressed in terms of the
program law of tether length change and its two first time derivatives. The novelty of the study consists in the
construction of a program control law that allows the tether to be deployed along the local vertical in a single
stage. The study used methods of analytical mechanics, numerical methods, and methods developed by the au-
thors. The obtained results make it possible to find the ranges of values of the deployment system parameters
allowing a deployment of this type. The errors of the numerical simulation are estimated. The practical signifi-
cance of the obtained results consists in the possibility of deploying small tethers in orbit with their alignment at
the conclusion of the deployment along the local vertical in a single stage with controlling the tether length with-
out the need for further dumping of libratory oscillations.

Keywords: Control, space tether; deployment, local vertical, one stage

Introduction. The ideas of use of the bodies connected by long flexible
thread in space go back to K. E. Tsiolkovsky's works and have more than century
history. The novelty and the originality of the problems and research techniques of
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the dynamics of the space tethered systems   (STS) attract to them attention of the
experts. Since the beginning of the 80th, the STS area is forming to the separate
area of the space research.

Among the problems connected with creation of the STS, the specific place is
held by the problem of deployment of the tether of two space objects in the
specified state. The large number of publications is devoted to this problem. Their
distinctions are defined first of all by the accepted tether physical model and also
by the nature of the control applied to deployment of the tether in its final state.

In practice of application of the STS, their most demanded configuration is
such at which the center of gravitation of the system moves in a circular orbit and
the tether is aligned along the local vertical. Its vertical configuration has a stable
relative equilibrium in the orbital frame of reference in case of the constant length
of the tether. The majority of practical applications is connected with use of the
radial tether of two bodies – the spacecraft  and subsatellite. So, for example, high
stability of a radial STS made it possible to suggest its use as the basic bearing
element for various options of solar space power plants [8, 9], for gravity-gradient
stabilization of spacecraft and for transportation of cargoes between modules
(space elevator) [12], as the lunar space elevator [10, 17] and the space ''escalator''
[8]. Microgravity conditions on end bodies of the tether can be used both for
scientific and technological processes, and for life support of spacecraft and space
stations [13, 16], for example, for pumping of liquid [10], or for improvement of
living conditions in orbit [5].

The configuration along the local vertical loses the stability at change of the
tether length in accordance with the theorem of change of the angular momentum
[14]. The important operational requirement that the subsatellite at deployment or
partial retrieval must remain on the local vertical, can be reached only at a special
control. In principle, for the motion control of the tether end bodies the traction
devices located directly on them can be used, however it complicates significantly
all system. Therefore, there were many publications, whose results show
possibilities of easier ways of control by the tether state.

Most publications devoted to research related to the deployment of tethers
consider their motion in circular orbits. At the same time, studies appear that
consider the motion of the tether in elliptical orbits [21].

The modes of deployment of orbital tethered systems are known providing
release of the thread with regulation of its release velocity. The description and
analysis of various modes of deployment of orbital tethered systems with control
of the deployment velocity are provided in works [6, 11, 12,15].

The ways of deployment of STS are known providing release of the thread
with its tension control. The description of such modes of deployment and devices
for their realization is provided in works [18 – 20].

At present, the large amount of the works is known describing various ways of
deployment when the tether came to alignment along the local vertical at the end
of deployment [4, 8, 11, 12, 23].

Analyzing the known publications, one may come to the conclusion that the
overwhelming majority of them that are devoted to such a deployment of tethers
describe two-stage process of deployment. At the first stage, the bodies of a future
tether (or the body of one subsatellite) most often are put to separate orbits by
method of spring pushing away. Then it is necessary to execute suppression of
libratory oacillations, which inevitably arise at the end of the first stage.
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Depending on the method used for calm of the libratory oscillations, this process
can demand either the large number of time, or special instrumental equipment of
the maternal spacecraft. This publication is intended for creation of such a mode of
the tether deployment, which can deploy the tether for one stage into the state
aligned along the local vertical.

There are several works devoted to single-stage deployment of tethers in the
centrifugal force field, but not in the state aligned along the local vertical, and in
the state of rotation either with the prespecified angular velocity, or with the
prespecified length [2, 3]. Besides, in these works the action of the planet
gravitational field was not taken into account, and the tension control of the de-
ployment was supposed by means of Coulomb forces and viscous friction forces
for which it is difficult to sustain the adequate accuracy of their realization.

Though contours of the tethers having the "astronomical" sizes are already
looked through in the theoretical researches, the main attention of the researchers
is still directed to small tethers study. As a rule, it is the so-called small space
tethers having lengths from several dozen meters to several kilometers. Such
tethers are of practical interest as they are suitable both for the solution of
independent scientific tasks, and for improvement, justification and check of the
number of hypotheses concerning the dynamics of deployment of tethers and ways
of their stationary motion creation. The tether with extent about tens meters can
serve as a standard of length for calibration of both onboard, and ground-based
optical and radar systems, as integral sensors of a planet force field, atmospheric
probe, etc. It is expedient to carry out tethers up to several kilometers long, in
particular, in electrodynamic option to use for correction of spacecraft orbits or
deorbiting of the space systems, which fulfilled their term.

The present publication is devoted to study of the deployment dynamics of
two bodies from spacecraft with the objective of their alignment along the local
vertical at the end of deployment, using only one stage. The tether can remain
connected with the spacecraft in two mass or in one mass options after completion
of the deployment, or be separated from it with transition to some orbit, close to
the initial one.

Physical model. Consider the case of the tether deployment directly from a
spacecraft. Let the mass of the spacecraft be significantly greater than the total
mass of the tether. Consider a case when the tether with length of several dozen
meters must be deployed. To use the known two stage modes for this purpose is
problematic since the tether tension at such sizes of the tether and mass of the end
bodies about (1–10) kg is very weak and can be lost that leads to loss of the tether
controllability. Therefore the decision was made to study the opportunity to use
centrifugal forces for deployment of the tether. Creation of centrifugal forces
requires preliminary rotation of the tether in its initial state with further increase
the tether length according to the found law, which will provide the tether of the
set length at the end of deployment. Even if creation of the one branch tether on a
spacecraft is required, it is expedient to deploy two identical opposite branches in
the case under consideration. Otherwise, one rotating branch can create significant
perturbations of the spacecraft attitude as it is problematic to create rotation of the
tether in the orbital plane passing through the spacecraft mass center.

It is possible to create initial rotation of the tether, which is deployed from a
spacecraft in different ways. For example, two spring pushers can be installed on a
spacecraft. The pushers push away tether bodies at the command from the Earth or
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from the on-board computer so that moving away the tether begins to rotate about
a normal to the orbital plane.

One can also use microengines of small propulsion on end bodies of the
tether or on the rotating beam from whose ends tether bodies separate at the initial
instant.

Advantage of spring pushers is that they more precisely create identical
impulses of repulsive forces for end bodies in the directions set in the orbital
frame. Their shortcoming is that the impulse of the angular momentum created by
them at pushing away of the tether bodies has to be compensated by the spacecraft
attitude control system. At the same time, pair of microengines on the bodies of the
tether will not bring perturbations in orientation of the spacecraft. The moment of
pulling forces created by them is not put to the spacecraft and does not break its
attitude. But at the same time, there is the problem of exact orientation of micro-
engines in the orbital frame of reference. Without focusing further on these issues,
consider that at the initial instant of the deployment process both bodies are
identical in size, have the opposite in direction velocities and are in the orbital
frame at equal distances from the rotation center. Such a tether is attached to the
spacecraft by the center of masses (but not the center of gravitation) at the time of
the deployment.

Completely deployed tether has the angular momentum, the vector of which is
directed along the binormal to the spacecraft orbit, and its magnitude is equal [8]

2( ) 2C orK t m r 


,

where m is mass of one end body, r is half of length of the tether L , or is
angular velocity of the orbital spacecraft motion.

The problem of the control system of the tether deployment is to reach by the
tether such a value of its angular momentum during deployment when it coincides
with the local vertical. Such a value is formed at the expense of the initial angular
momentum of the tether and influence of the gravitational torque at its
deployment.

Mathematical model. Without loss in generality of the problem statement,
choose the model of the tether as two equal point masses connected by a massless
thread in a circular orbit with the radius 7,000 km in the field of attraction of the
Earth. The neglectof the sizes of end bodies is proved by the fact that the modes
of motion, in which winding of a tether on the end bodies is possible, are not
considered further. The neglect of mass of a thread is justified for nonconducting
electric current threads made of modern light materials. The total mass of such
threads in the conditions of their weak tension in the Earth orbits is the
insignificant part of the total tether mass. Besides, experience of previous
researches, in particular, the analysis of results, which was carried out in [4],
shows that the controlled motion of continual systems with the massive thread
described by differential equations in partial derivatives practically does not differ
from motion of the tether, whose mass is concentrated in end bodies.

Introduce the following right coordinate frame of reference: absolute frame –
the axis E AO Z coincides with the axis of the world and is directed to the Pole star,
the axis E AO Y is directed at the point of vernal equinox, the axis E AO Y supple-
ments the frame to right orthogonal, and orbital frame or or orCx y z (Fig. 1) in
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which the axis orCx coincides with the local vertical, the axis orCy coincides
with the velocity vector of the spacecraft mass
center, the axis orCz coincides with the vector of
the orbital angular velocity. For convenience of
the description of motion of the tether end bodies,
combine origin of the orbital frame of reference
not with the mass center of the spacecraft, but
with the mass center of the tether. At the same
time, consider that the directions of its axes are
parallel to the axes of the orbital frame with
origin at the spacecraft mass center. Such a shift
of the orbital frame is admissible, as the
spacecraft sizes are negligible in comparison with
the radius of its orbit.

Choose the central Newtonian field of forces as model of the gravitational
field acting on the tether. The radius-vectors 1 2r , r  of the tether end bodies can be
determined by their projections to the axes of the orbital frame:

1 1 1 1r { , , }or or orx y z
 , 2 2 2 2r { , , }or or orx y z

 . Choose these projections and their time
derivatives as phase variables of the problem.

To investigate the possibility of realization of the considered method of de-
ployment of the tether, it is necessary to construct the control law of the deploy-
ment mode in the beginning, and then to carry out the numerical simulation of  this
mode using the found control law.

It is necessary to carry out the error evaluation of solution in parallel with the
numerical simulation. It will allow to judge the reliability of the obtained results.

Use the motion equations of the tether of variable length in the spherical
coordinates [8] for creation of the program control law for the studied mode of
deployment. They take the form at the used simplifying assumptions and in the
notations accepted here:

22( )( / tan ) 3( ) sin cos 0or orr r              ;
2 2 22 / [( ) 3( ) cos ]sin cos 0;or orr r             (1)

2 2 2 2 2 2[ ( ) cos ( ) (3cos sin 1)] / 0or orr r T m             .

Here or is the orbital angular velocity of the spacecraft, T is the tension
force, m is mass of one end body. Other notations are clear from Fig. 1.

As the program motion of the tether is supposed to be created in the orbit
plane,  consider program value of the angle 0  . As a result, the system of the
equations (1) reduces to the equations

22( ) / 3( ) sin cos 0or orr r           ; (2)

2 2[( ) ( ) ] / 0or orr r T m       . (3)

The motion equations of the tether of variable length in the form of the Hill–
Clohessy–Wiltshire (HCW) equations [8] are used farther for the numerical simu-
lation of the mode of the tether deployment under control of the found program

Fig. 1
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law. These equations describe the spatial motion of the end bodies concerning the
mass center of the tether.

Following the traditional derivation of these equations, at the chosen direction
of the orbital frame axes, they can be written down as follows:

2

2

{2 3( ) (1) / ,

2 (2) / ,

( ) (3) / }, ( 1, 2).

or or or or
i i i ri i

or or
i ri i

or or
i ri i

r y x T e m

x T e m

z T e m i

  

 

  

 



 





(4)

It is necessary to know expression for the tether tension force T in each
instant of time to close the system of twelve differential equations of the first
order. This problem will be considered below.

The mistakes related to errors of calculations or to mistakes in mathematical
computation of the researcher may become apparent in process of integration of
the motion equations. Sometimes such mistakes slightly distort results in the
considered range of parameters of the studied system and are imperceptible at first
sight. To avoid such a situation, it is expedient to use independent check of the
results, using the general theorems of the mechanics. For space objects of the
considered type, which is subject to action of the known external forces, it is
expedient to use the theorem of change of the angular momentum of the system for
check of the integration results. Write down this theorem in the following integral
form:

0

0K ( ) K ( ) m ( )
t

C C C

t

t t d   
   . (5)

Here C is the point about which the angular momentum is calculated, mC is
the external torque.

This theorem is satisfied both when the point C is fixed in the inertial frame,
and in the case of the motion of the point C in the Keplerian orbit.

Now, knowing the law of change of the gravitational torque value during the
tether deployment and integrating it in the real time, one may determine the current
value of the angular momentum of the tether at any instant of time. On the other
hand, the same value can be simply calculated, using the values of the phase
variables of the problem in equations (4) obtained at solving of the initial value
problem for equations (4). Comparison of the values of the angular momentum of
the tether obtained by two various ways allows to draw the conclusion on
reliability of the obtained results.

Scenario of deployment of the tether. Certain problems can arise for the
control system of the spacecraft at using initial rotation of the tether for creation of
centrifugal forces. If to deploy the tether with one body from the spacecraft, whose
mass is significantly greater than the mass of the end body, then the rather large
torque concerning its mass center will act on the spacecraft in the mode of initial
rotation of the tether. The vector of this torque will rotate in the orbital plane,
gradually decreasing with increasing in the tether length. It can cause
disorientation of the spacecraft. The problem disappears, if the spacecraft has
rather large mass and geometrical characteristics, or when two identical branch of
the tethers are deployed at the same time in opposite directions. Consider further
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that one of these options is implemented. Study mainly the dynamics of
deployment only of one branch of the tether.

Without dwelling on detail of constructive realization of the deployment de-
vice, consider that the rotation axis of the tether is fixed in the spacecraft frame of
reference, passes through its mass center and is stabilized in the orbital frame dur-
ing deployment. The deployment device creates initial rotation of the tether end
bodies with the radius 0r and the angular velocity 0 . The end body 1m (see Fig.
1) separates from the deployment device at 0  . At the same time the thread of
the tether is deployed under the program law ( )r r t from the device located on
the spacecraft and rotates synchronously with rotation of the tether in order to the
thread does not become twisted.

The tether appears aligned along the local vertical at the end of deployment. It
can remain in such a state for execution of the tasks assigned to it.The scenario is
also possible when the tether has to move away from the spacecraft in one or other
direction in the close orbit. In that case, if the tether consists of one branch (i.e. has
only one end body), it is possible to attach the second body on the free end of the
tether and to separate it from the spacecraft. In that case the gravity centre of the
tether passes to other orbit and begins to move away from the spacecraft with the
velocity

2 2( ) ( )or or
CTCT CCRV R  .

Here 3/
C

or
C GM R  , 3/

CT
or
CT GM R  , CR is the radius of the spacecraft orbit,

/ 2CT CR R L  is the new radius of the orbit of the tether (depending on the tether
is deployed either in the nadir, or in zenith), 14 3 23.986004418*10GM m s . So,
for example, the tether of 5 km long shifted on the half of its length along the local
vertical from the spacecraft, will move away in one or other direction along the
tangent to the orbit with the velocity about 6 mm a second.

If the tether is deployed from the spacecraft has two branches, one can use the
methods discribed in [1, 23] for its transfer to other orbit. At first one can retrieve
completely one branch, and then deploy the second branch to the set length,
without violating its alignment along the local vertical at the end.

Creation of program control. Consider further the algorithm of creation of
the control of the deployment process of the one branch tether from the spacecraft
in the centrifugal force field.

The tether is installed in the beginning in the
device of deployment, which rotates about the axis

orCz with the set angular velocity (Fig. 2).
Designate it as 0 .

The body of the tether separates from the
deployment device in the initial instant at value

0(0)  , supply of the thread in the branch of
the tether begins and length of the branch begins
to increase. During rotation, the periodic
gravitational torque, whose maximum value
increases in the magnitude with increasing the

Fig. 2
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tether in length begins notably to act on the branch.
As through each tether turn its length monotonously increases, on each turn

the angular momentum of the tether receives some increment.
When the angular momentum of the tether becomes equal to the value, which

corresponds to the angular momentum of the tether of the current length aligned
along the local vertical, supply of the thread terminates and the tether stops in the
required position.

It is possible to determine values of key parameters defining the condition of
the tether at the beginning and at the end of deployment on the basis of the
described scenario of this mode. It is obvious that based on physical reasons, it is
possible to set the following conditions:

0(0) ;r r ( ) ;f fr T r (6)

The first condition is defined directly by the deployment device design. The
second condition can be used further for determination in advance of the unknown
time fT of the deployment termination or for the choice of other parameters.

Two more conditions can be obtained from the condition of constancy of the tether
length, both in the initial instant, and at the time of the deployment termination:

(0) 0;r  ( ) 0. fr T (7)

The following two conditions characterize lack of jump of the tension force,
both at the beginning of deployment of the thread from the container, and at the
time of the deployment termination:

(0) 0;r  ( ) 0. fr T (8)

It follows directly from equation (3), which has to be carried out during
deployment at any instant.

Besides, the following boundary conditions of the mode for the angle  and
its derivatives are obvious:

0(0) ;  ( ) 2 .fT n  (9)

As there are no obvious bases to accept the initial value of the pitch angle 
other than zero, write down these conditions in the form

(0) 0;  ( ) 2fT n  . (10)

Further, also on the basis of the physical meaning, it is possible to write down
two couples more of the boundary conditions:

0(0) ;   ( ) 0.
fT (11)

(0) 0;  ( ) 0.
fT (12)

Taking into account the equation (2), it is visible that the part of conditions
(6)–(12) duplicate each other. On the other hand, conditions (7) and (8) on the
basis of the equation (2) and conditions (10) can be replaced with two conditions

2
0(0) 3( ) ;or     ( ) 0fT  . (13)
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Transform the conditions imposed on r to additional conditions on  using
equations (2), (3). Obtain ordinary differential equation of the first order with
variable coefficients and with the corresponding initial condition proceeding from
equation (2):

 
 

23 ( ) sin 2 2

4

or

or
r r

  

 


 






 , 0(0)r r , (14)

from which follows

 
2

2

0
3( ) sin(2 ( )) 2 ( )( ) exp .

4 ( )

t or

or
T

r t r d    


  

     
    





(15)

It is possible to draw the conclusion from the given dependences that at the
known law of change ( )t the law of change of the length ( )r t can be considered
as function of the angle ( )t , its derivatives, duration of deployment fT and
initial length of the tether. Thus, knowing the suitable law of change of the pitch
angle of the tether vs, time, which corresponds to smooth approach of the tether to
the local vertical, corresponds to the set final length of the tether, does not lead to
loss of controllability of the deployed tether because of loss of its tension on some
intervals of time, as a result of the solution of the initial value problem (8) the law
of change of length of the tether can be found, which provides the solution of the
formulated problem.

The law of change ( )t can be introduced in the form of any finite functional
series, whose coefficients can be found from eight conditions (9), (10), (12), (13).
For example, introduce the law of change of the pitch angle ( )t in the form of
the power series

7

0
( ) .

i

i
fi

tt c
T




 
   

 
 (16)

Its coefficients found by using conditions (9), (10), (12), (13) is written as
2

3 0( ) / 2;orc    
0 1 0 20; ; 0;c c c  

2 3 4
4 0 0(70 20 ( ) ) /or

f f fc nrot T T T       ;
2 3 5

5 0 03(56 15 ( ) ) /or
f f fc nrot T T T        ; (17)

2 3 6
6 0 02(70 18 ( ) ) /or

f f fc nrot T T T       ;
2 3 7

4 0 0(80 20 ( ) ) / (2 )or
f f fc nrot T T T        .

Here nrot is number of the complete revolutions of the tether during
deployment;

Having differentiate twice the expression (16) with respect to time, one can
obtain expressions for the first and second derivatives. Substituting the given
parameters of the deployment system in the expressions (17), as a result of the
solution of the initial value problem (14), one can obtain the time dependent law of
the tether length change. This law provides deployment of the necessary length
tether with alignment it along the local vertical. at the end.
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Numerical example. Consider further implementation of the method of the
program deployment of the space tether along the local vertical with use of its
initial rotation.

The analysis of the initial value problem (14) shows that the angular velocity
of the tether rotation ( )t cannot be negative for creation of the program law of
change of the tether length, since the denominator in the equation (14) turns into
zero and the solution of the problem has a singularity point at ( ) ort   .

Accept the following values of the tether parameters for numerical example:
mass of the end bodies are identical and equal m  10 kg;
initial length of the tether branch 0r =2 m;
initial angular velocity 0 =1 rad / s;
number of rotations before the end of the deployment nrot  70;
duration of the deployment fT  3000 s.

Use the equations of Hill-Clohessy-Wiltshire (4) for simulation of the dynamics
of the tether deployment in the centrifugal force field. There equations describe any
spatial motion of the tether, and not just the motion in the orbital plane. The current
length of the tether does not enter directly into these equations. The program for
simulation of the dynamics of deployment is constructed as follows: after calculation
of the coefficients of the power series (16), program values of the pitch angle ( )t
and its first two derivatives on time are calculated on each an integration step of the
initial value problem (14). The obtained values are substituted in the right part of
equation (14), and the current program value of the tether length is calculated. In
parallel, the program value of the tension force is calculated on the basis of equation
(3). This value is used in the HCW equations as the program control. It completely
corresponds to program changes of the tether length.

The solving of the problem of creation of the program law of change of the
tether length was made with the integration step of 0.01 s. The following results
are obtained at this. The law of change of the tether length is shown in Fig. 3.

One can see here that the tether length increases slowly in the beginning, then
the velocity of deployment significantly increases at the certain time interval and
smoothly decreases to zero at the end. The law of program change of the velocity
of deployment shows that it reaches the greatest level at the final stage of
deployment, sharply decreasing to zero right at the end (see Fig. 4).

Fig. 3 Fig. 4
The tether angle of rotation about the binormal to the orbit behaves as it is

shown in Fig. 5.
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Here it is possible to see the fast increase in the angle of rotation at the
beginning of deployment and decrease in the angular velocity of rotation as the
tether length increase.

Fig. 5 Fig. 6
It corresponds to the theorem of change of the angular momentum taking into

account that the gravitational torque in the considered mode increases the total an-
gular momentum of the tether. Nevertheless, the analysis of the value of the total
angular momentum of the tether (Fig. 6) shows that at small sizes of the tether at
the initial time the influence of the gravitational torque is a little noticeable.

Only at the very end of deployment this influence becomes more noticeable
with each rotation. The gravitational torque makes the biggest contribution to the
total angular momentum of the tether at the final time of deployment. The law of
change of the gravitational torque vs. time is shown in Fig. 7.

Here it is visible that though amplitude of the gravitational torque begins to
grow considerably from the instant t=1000 s, its total effect cannot be shown
considerably since the tether length is changing slowly at the beginning and sign of
the slowly changing gravitational torque is  changing almost periodically. The
maximum value of the gravitational torque arises on the finishing not rotational
motion of the tether and turns in zero when the tether is aligned along the local
vertical.

At deployment of the tether controlled by the found law, the program tension
of the tether behaves as it is shown in Fig. 8.

Fig. 7 Fig. 8.
Naturally, the greatest force of tension in the tether at such a way of

deployment arises at the initial instant, when the centrifugal forces acting on the
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end bodies are maximum. In the considered example, the maximum force does not
exceed 20 N. Such a force without problems and noticeable deformations is
perceived by thin threads made of modern materials. The minimum tension force
in the tether corresponds to its state along the local vertical. While threads are
fixed on the spacecraft, the tether tension is defined by the ratio of mass of the end
body and spacecraft. According to [8], the tension force of the tether aligned along
the local vertical is equal

23 ( )or
RT m L ,

where 1 2 1 2/ ( )Rm m m m m  , L is the tether length. In this case it is the tether
branch length. As it is supposed that 1 2m m , 1Rm m . If the deployed two-
body tether separates from the spacecraft after joining of the threads in the point of
their exit from the device of deployment, then 1 / 2Rm m and the tension tether
remains the same, since the tether length in that case 2L r . Figure 9 corresponds
to the first case. The tether tension is equal to 0.0022 N at the end of deployment.
Such a value is weakly visible in the graph.

Further simulation of the tether dynamics in the deployment mode was carried
out according to the constructed law of change of the tether length in time after
separation of the end body from the deployment device. The trajectory of motion
of the end body of one branch tether is constructed on the plane 1 1

or orCx y as a
result of solving of the initial value problem for equations of the controlled motion
of the tether in the form of Hill–Clohessy–Wiltshire (4) with the accepted initial
conditions. This trajectory is shown in Fig. 9.

Fig. 9. Fig. 10
It is visible in the Fig. 9 that at the initial period while length of the tether

grows slowly and the gravitational torque is small, the step of the spiral motion of
the end body is also small. On the last revolution, the end body significantly
deviates towards negative values of the axis 1

orCy and here the gravitational
torque, maximum in size, completes deployment process, aligning the tether along
the local vertical.

Naturally, the maximum tension of the tether arises at the initial stage of its
rotation in the deployment device at such a mode of deployment. In the considered
example this value is 20 N.

Numerous numerical experiments were made at various values of the system
parameters. It was established that at such a way of deployment of the tether it is
possible to reach significantly large lengths of the tether in principle. In Fig. 10,
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the trajectory of the end body of one branch is shown, which is implemented at
deployment with the initial 0r value equal 100 m and with the initial angular
velocity of rotation 1 rad / s. Naturally, the deployment device of such sizes is
unrealizable. On the other hand, it is possible to try to carry out preliminary
deployment from the device having 0r =2m to length of the branch of the rotating
tether of 100 m. But at the same time, the angular velocity of the initial rotation
must be about 25 rad/s. When masses of the end bodies are equal 10 kg, the tether
tension is about 12500 N that creates serious problems. in spite of the fact that the
tether thread can be made of variable cross section, having strengthened it on the
sections of the thread, which are subjected to maximum tension.

Results of the error analysis of simulation of the tether deployment in the
centrifugal force field are shown in
Fig. 11. Here the blue line shows
the value of the total angular
momentum of the tether during
deployment calculated both on
changes of the phase variables and
on the basis of the theorem about
changes of the angular momentum
under the influence of the
gravitational torque. Both these
lines in the figure coincide. Their
values are defined by the left scale.
The red line shows the difference in
these values and characterizes
errors of calculations.

They are defined by the right scale of the figure. The small values of the errors
of the numerical simulation in comparison with the calculated values allows to
consider the obtained results as reliable.

Conclusion. The research of the mode of deployment of the space tether in
the centrifugal force field with alignment it at the end of deployment along the
local vertical is conducted. The preliminary rotation of the tether about the
binormal to the orbit is used for deployment. The development of the tether length
control law is made at the beginning. This control law provides executing of the
planned deployment. The numerical simulation of the dynamics of the tether
deployment under control of the constructed program law is carried out at the
second investigation phase. The novelty of the conducted research consists in
creation of the program control law, which allows to deploy the tether along the
local vertical for one stage without need to carry out further damping of libratory
oscillations. The obtained results give the opportunity to determine the ranges of
values of the deployment parameters allowing to carry out deployment of the
considered type. The assessment of errors of the numerical simulation is carried
out. The practical importance of the obtained results consists in the opportunity to
carry out deployment of small tethers in the orbit with alignment them at the end
of the mode along the local vertical for one stage with the tether length control.

Fig. 11
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