

С. .

Cavitation phenomena in liquid-propellant rocket engine (LPRE) pumps not only affect the power performance characteristics of the pumps, but they also affect the pump dynamics and pogo vibrations. The theoretical characterization of cavitation phenomena in LPRE pumps is not a widely used practice because theoretical and experimental data are in unsatisfactory agreement. Because of this, use is made of approaches that employ experimental data. The goal of this work is to determine the coefficients of a hydrodynamic model of cavitating LPRE pumps throughout the cavity existence region based on the experimental frequencies of cavitation oscillations and cavitation self-oscillation boundaries. In determining the cavity elasticity and negative resistance, use was made of the experimental cavitation oscillation frequencies of 26 LPRE pumps differing in dimensions and capacity. In determining the cavitation resistance distribution coefficient and the cavity-due disturbance transfer time, the experimental cavitation self-oscillation boundaries of 14 more pumps were used. To extend the cavity elasticity determination region, the extrapolation dependence of the cavity elasticity in cavitation stall regimes was updated. To make the stratification of the cavity resistance dependence more uniform in the range of large discharge coefficients, incipient cavitation numbers were refined. Using he qualitative dependence of the cavitation resistance distribution coefficient obtained from theoretical transfer matrices of cavitating pumps and its lower estimate (at zero disturbance transfer time) and upper estimate (for a uniform stratification of pump transfer matrix determinants), its analytical dependence was found. Using it and the coefficients of a mathematical model of cavitation oscillations on the cavitation-self oscillation boundary, disturbance transfer times were found and approximated.

: liquid-propellant rocket engine, inducer-equipped centrifugal pump, cavitation, hydrodynamic model, experimental cavitation self-oscillation frequencies and regions.

)

67

. – 2024. –

_

,

68

 τ_K

 δ –

,

.

_

[17], . 1. a-b c-d – . ,

:

 k_2 .

.

 $p'_1.$ (. . 1),

$$s\delta p_1' = -\frac{B_1}{\gamma} (\delta G_1 - \delta G_2) + s \, k_2 B_2 \, \delta G_1 + s (1 - k_2) B_2 \delta G_2 \,, \tag{1}$$

$$\delta p_1' = \frac{\delta p_1}{1 + s\tau_K},\tag{2}$$

.

 C_K

 p_1

,

$$B_1, B_2, \tau_K \quad k_2 \quad -$$

[7, 9] -

[18]

$$\delta p_1 + R_1 \delta G_1 + s (J_1 + J_{OT}) \delta G_1 = 0,$$
 (3)

•

69

 $\gamma \ -$

$$\delta p_2 = R_2 \delta G_2 + s J_2 \delta G_2 = 0, \qquad (4)$$

-

$$R_1, R_2 -$$
; $J_1, J_2 -$; $J_{OT} -$ [19]; $p_2 -$.

,

$$\delta p_2 = (1+m)\delta p_1 + s_2\delta G_2 - sJ_H\delta G_2 + r\delta G_1, \qquad (5)$$

$$\alpha s^{3} + \beta s^{2} + \chi s + \zeta = 0, \qquad (6)$$

$$\alpha = (J_{1} + J_{OT})(J_{H} + J_{2}) + B_{2} \tau_{K} [k_{2}(J_{H} + J_{2}) - (1+m)(1-k_{2})(J_{1} + J_{OT})];$$

$$\beta = (J_{1} + J_{OT})(R_{2} - s_{2}) + R_{1}(J_{H} + J_{2}) - \frac{\gamma \tau_{K}}{B_{1}}(J_{H} + J_{2} + (1+m)(J_{1} + J_{OT})) + ;;$$

$$+ B_{2}k_{2}(J_{H} + J_{2} + \tau_{K}(R_{2} - s_{2})) - B_{2}(1-k_{2})[(1+m)[(J_{1} + J_{OT}) + R_{1}\tau_{K}] + r\tau_{K}];$$

$$\gamma = R_{1}(R_{2} - s_{2}) - \frac{\gamma}{B_{1}}(J_{H} + J_{2} + (1+m)(J_{1} + J_{OT}) + \tau_{K}(R_{2} - s_{2} + (1+m)R_{1} - r)) + ;;$$

$$+ B_{2}(k_{2}(R_{2} - s_{2}) - (1-k_{2})[(1+m)R_{1} - r]);$$

$$\zeta = -\frac{\gamma}{B_{1}}(R_{2} - s_{2} - r + (1+m)R_{1}).$$

$$(6)$$

$$s^{3} + \eta \cdot s^{2} + \lambda \cdot s + \mu = 0, \qquad (7)$$

$$\eta = \beta/\alpha ; \ \lambda = \chi/\alpha ; \ \mu = \zeta/\alpha .$$

$$x_{1}, \ x_{2} \quad x_{3} - (7). , \qquad (7).$$

$$\begin{cases} x_{1} + x_{2} + x_{3} = -\eta , \\ x_{1} \cdot x_{2} + x_{1} \cdot x_{3} + x_{2} \cdot x_{3} = \lambda , \\ x_{1} \cdot x_{2} \cdot x_{3} = -\mu . \end{cases}$$

$$(8)$$

$$x_{1} \cdot x_{2} \cdot x_{3} = -\mu .$$

(7)

,

[7]. -

,

• ,•

$$B_1 \approx -\gamma \left(J_1 + J_{OT}\right) \left(2 \pi f_O\right)^2, \tag{12}$$

f₀ - .

• ,

)

,

,

	(-	D_E ,	d_S ,	<i>S</i> ,	Ζ	s _{1B} ,		-	
1	1.1	12	6,3	5,4	2	8°9′	-863		[18, 7, 8]
2	1.2	12	6,3	4,95	2	7°29′			[18]
3	1.3	12	6,3	4,55	2	6°53′			[18
4	1.4	11	6,3	5,4	2	8°53′			[18]
5	2.1	5,6	2,6	2,52	2	8°9′	-862		[18, 7, 8]
6	2.2	5,6	2,6	2,88	2	9°18′			[18]
7	2.3	5,6	2,6	3,15	2	10°9′			[18]
8	2.4	5,6	2,6	4,4	2	14°2′			[18]
9	2.5	5,6	2,6	5,76	2	18°8′			[18]
10	2.6	6,1	2,6	2,52	2	7°29′			[18]
11	2.7	6,1	2,6	2,16	2	6°26′			[18]
12	3	14,11	7	8,9	3	11°21′	-218		[22]
13	4.1	15,62	7,6	9,53	3	11°	-264		[23
14	4.2	15,62	7,6	12	3	13°40′	-264		[23]
15	5.1	5,2	2	2,8	2	9°44′	-852		[1, 24]
16	5.2	5	1,4	2,4	2	8°41′			[1, 24]
17	6	5,04	1,93	2,35	2	8°26′	-861		
18	7	15,62	7,6	8,65	3	10°	-120		[25]
19	8	5,8	3,1	2,4	2	7°30′	-8		[26]
20	9	12	4,5	5,4	2	8°9′	-863		[27]
21	10	4,7*	1,3*	2,76*	2	10°35′			[28, 29]
22	11	10,6*	3,16*	4,9*	2	8°22′	-8		[30]
23	12	7,46	3,6	3,51	2	8°31′	-119		[31]
24	13	29,3	13	16	3	9°52′	-15		[32]
25	14	21,5	10,5	14	3	11°43′	-15		[32]
26	15	12,11	5,4	7,85	3	11°40′	-218		

$$: D_E -$$

; *d*_S

; Z –

; S –

-

2 –						
	D_E ,	d_S ,	<i>S</i> ,	Œ	n _S	$G_O,$ /
[9]	5,0-15,62	2,0-7,6	2,16-12,0	2,03-15,97	28,0-159,8	4,3-336,4
[21]	4,7-29,3	1,3-13,0	2,16-16,0	1,48-15,97	27,4-213,6	4,3-585,6

,

-

_

$$\widetilde{B}_{1}:$$

$$\widetilde{B}_{1} = B_{1} \cdot \frac{V_{SM}}{\rho \cdot W_{1M}^{2}/2}, \quad V_{SM} \approx 2,3 \cdot s \cdot \frac{D_{E}^{2} - d_{S}^{2}}{4},$$

$$; \quad \rho \cdot W_{1M}^{2}/2 \quad -$$

 V_{SM} – ,

.

 k^{*}

,

q: $k^* = \frac{p_1 - p_{BD III}}{\rho \cdot W_{1M}^2/2}, \qquad q = \frac{G_1}{G_0},$

 $p_{BD III}$ –

[33].

$$\widetilde{B}_{1}(k^{*},q) = \frac{k^{*}}{(21)!}, \qquad q$$

$$\widetilde{B}_{1}(k^{*},q) = \frac{a(q) \cdot k^{*2} + b(q) \cdot k^{*} + c(q)}{1 - (k^{*}/_{*})^{2}}, \qquad (13)$$

$$a(q), b(q), c(q) - \frac{q}{k_{O}^{*}}, \qquad q = \frac$$

73

.

$$a(q) = -5,30 - 1,14 q$$
, $b(q) = -0,46 - 4,03 \cdot q - 9,91 q^2$. (16)

$$\widetilde{V}_C(k^*,q)$$

,

 k_M –

$$\tilde{V}(k^*,q) = \int_{k^*}^{k^*} \frac{dk^*}{\tilde{B}_1(k^*,q)}.$$
(17)

•

,

$$\begin{split} \tilde{V}_{C}(k^{*},q) &= \frac{1}{\sqrt{-\Delta}} \cdot \ln \frac{2ak^{*} + b - \sqrt{-\Delta}}{2ak^{*} + b + \sqrt{-\Delta}} \frac{2ak^{*} + b + \sqrt{-\Delta}}{2ak^{*} + b - \sqrt{-\Delta}} \left(1 - \left(\frac{b}{2a \cdot k^{*}} \right)^{2} \right) - \\ &- \frac{1}{k_{O}^{*2}} \cdot \left(\frac{k^{*} - k^{*}}{a} - \frac{b}{2a^{2}} \ln \frac{a \cdot k^{*2} + b \cdot k^{*}}{a \cdot k_{O}^{*2} + b \cdot k^{*}} \right), \qquad \Delta = 4ac - b^{2}. \end{split}$$
(18)
(18), , , $\tilde{B}_{2}(k^{*},q)$:

[7]

(13) (17),

$$\begin{split} \widetilde{B}_2\!\left(\!k^*,\,q\right) &= -\frac{\partial \widetilde{V}_C}{\partial q} \left/ \frac{\partial \widetilde{V}_C}{\partial k^*} = -\widetilde{B}_1\!\left(\!k^*,\,q\right) \!\cdot \frac{\partial \widetilde{V}_C}{\partial q} \,. \\ \widetilde{B}_2\!\left(\!k^*,\,q\right) \end{split}$$

74

•

$$\tau_K = 0 \tag{11}$$

$$k_2 = \frac{-B_k \pm \sqrt{B_k^2 - 4A_k C_k}}{2A_k} , \qquad (19)$$

$$\begin{split} A_{k} &= -B_{2}^{2} R_{\Sigma} J_{\Sigma}, \\ B_{k} &= -B_{2} \{ J_{\Sigma} [R_{1}(R_{2} - s_{2}) - B_{1}/\gamma J_{\Sigma} - B_{2}((1 + m)R_{1} - r)] + \\ &+ R_{\Sigma} [R_{1}(J_{2} + J_{H}) + (J_{1} + J_{OT})(R_{2} - s_{2} - (1 + m)B_{2})] \} \\ C_{k} &= -B_{1}/\gamma R_{\Sigma} (J_{1} + J_{OT})(J_{2} + J_{H}) - [R_{1}(J_{2} + J_{H}) + \\ &+ (J_{1} + J_{OT})(R_{2} - s_{2} - (1 + m)B_{2})] [R_{1}(R_{2} - s_{2}) - \\ &- B_{1}/\gamma J_{\Sigma} - B_{2}((1 + m)R_{1} - r)] \\ R_{\Sigma} &= (1 + m)R_{1} + R_{2} - s_{2} - r, \\ J_{\Sigma} &= (1 + m)(J_{1} + J_{OT}) + J_{2} + J_{H}. \end{split}$$

. 3.

-

_

0,5

(2) (5)

-

$$\begin{cases} \delta p_2 = b_{11} \, \delta p_1 + b_{12} \, \delta G_1 \\ \delta G_2 = b_{21} \, \delta p_1 + b_{22} \, \delta G_1 \end{cases}, \tag{20}$$

$$b_{11}, b_{12}, b_{21} = b_{22} - b_{21} = \frac{s}{(B_1/\gamma + s(1-k_2)B_2)(1+s\tau_K)}, \qquad b_{22} = 1 - \frac{sB_2}{B_1/\gamma + s(1-k_2)B_2}, \\ b_{11} = 1 + m + (s_2 - sJ_H)b_{21}, \qquad b_{12} = r + (s_2 - sJ_H)b_{22}.$$
(20)

$$D = b_{11}b_{22} - b_{12}b_{21} = b_{22}b_{21}\left(\frac{1+m}{b_{21}} - \frac{r}{b_{22}}\right).$$

m=0

,

r =0. $D \approx b_{22} = 1 - \frac{sB_2}{B_1/\gamma + s(1-k_2)B_2}$. (21) k_2 (21) τ_K . , (21) [6]. -) Re D=1(D (21) $\operatorname{Im} D = 0$ B_1 , $B_2 \quad k_2$ c(q) (14), $\widetilde{B}_2(k^*, q)$ 1 $\widetilde{B}_1(k^*, q).$ k^* k_2 , Re D Im D, $\operatorname{Re} D \quad \operatorname{Im} D,$ $k_{2} < 1$ $k_{2}(k^{*}, q) \quad .$ $k_{2}(k^{*}, q),$ $k_{2}(k^{*}, q) \quad ((19))$ [34], $k_2(k^*,q)$ (21), $k_2(k^*,q) = \frac{0.85 - 0.3 q}{1 + [2(1+q)k^*]^2}.$ (22) $k^* = 0 - 1$ q = 0 - 1 $k_2(k^*, q)$ $k^* = 0$ $k_2 < 1$ 0,85 0,55. *q*, k_2 . $(k_2=0,5)$ $k^* = 0,01 - 0,15.$ $k_2(k^*,q)$ (22), . 3

$$k_2(k^*, q)$$
 (22),

$$\begin{array}{c} (21) \\ \widetilde{B}_{1}(k^{*},q), \ \widetilde{B}_{2}(k^{*},q) \\ D \approx 1 - \frac{j\omega \widetilde{B}_{2}}{\widetilde{B}_{1} R + j\omega(1-k_{2})\widetilde{B}_{2}}, \\ R = \frac{\pi n}{2,3\ 60}; \ j - \qquad ; \ \omega - \end{array}$$

. 5 n .

$$\operatorname{Re} D$$
 $\operatorname{Im} D$

,

$$\begin{split} A_T &= \frac{\gamma}{B_1} R_{\Sigma} B_{\Sigma}, \\ B_T &= \frac{\gamma}{B_1} R_{\Sigma} \left[R_1 (J_2 + J_H) + (R_2 - s_2) (J_1 + J_{OT}) \right] - \\ &, \\ - B_{\Sigma} \left[R_1 (R_2 - s_2) + B_{\Sigma} \right] \\ C_T &= \frac{-\gamma}{B_1} R_{\Sigma} (J_1 + J_{OT}) (J_2 + J_H) - \left[(J_2 + J_H) (R_1 + B_2 k_2) + \\ &+ (J_1 + J_{OT}) (R_2 - s_2) - B_2 (1 + m) \right] (R_1 (R_2 - s_2) + B_{\Sigma}) \end{split}$$

$$B_{\Sigma} = \frac{-\gamma}{B_1} J_{\Sigma} + B_2 k_2 R_{\Sigma} - B_2 [(1+m)R_1 - r].$$

$$au_K^* \qquad k^*$$
 ,

. 6.

.6
$$\tilde{\tau}_K^*$$

$$\tilde{\tau}_K^* = \frac{1}{a_{T1} + a_{T2} \, k^* + a_{T3} \, k^{*2}} \,, \tag{24}$$

 $a_{T1}=0,073+0,019\,q+5,57\,q^2\,,\ a_{T2}=3,78+4,61\,q+39,8\,q^2\,,$ $a_{T3}=21,2+17,6\,q+107,0\,q^2\,,$

1.1

			$k_2(k^*, q).$,
			$\ddagger_{K}^{*}(k^{*},q).$	-
1.	· ·,	· ., · .:	, . , . , . , . , . , . , . , . , .	,
2.	• •,	· .,	,	-
3. 4. Pylypen I. D., St . 202 5. Ng S. L. 1978. V 6. C. E. Br cavitatin	ko O. V., Degtyar Ikin L. A. Providin 0. V. 26, 4 , Brennen C. E. H . 100, P 166–17 rennen, C. Meissn ng inducers. ASMI	ev M. A., Nikolaya ng of POGO stabil 3–20. https://doi.or Experiments on th 6. https://doi.org/1 er, E. Y. Lo, G. S E J. Fluids Eng. 19	w O. D., Klimenko D. V., ity of the Cyclone-4M lat rg/10.15407/knit2020.04. e Dynamic Behavior of O 0.1115/1.3448625 . Hoffman. Scale effects 82. V. 104, P . 428–433.	.: , 1977. 208 . <i>Dolgopolov S. I., Khoriak N. V., Bashliy</i> unch vehicle. 003 Cavitating Pumps. ASME J. Fluids Eng. in the dynamic transfer functions for https://doi.org/10.1115/1.3241875
7.		-		. 1976. 3 131–139.
8.	,	• •	-	
.: 9.	. , 1980	. 37–46.	-	
10.	. 1998. 8 ,	50–56. https://doi.	org/10.1016/S0262-1762	(99)80457-X
	1999 5	1 90_96 http:	s://doi.org/10.15407/knjt1	
11.	,	· .,	· ·,	,,
			() =
18	-20			. 2000. 1 3–
18. 12.	-20 ,	,	· · · · ·	, 2000. 13- , . , . ,
18. 12. 13 Pylyper Bashliy POGO- https://c 14. Dolgo, rocket e https://c 15.	-20 , , nko O. V., Prokop I. D., Polskykh S. suppressors for Cy loi.org/10.15407/k polov S. I., Nikola engines under their loi.org/10.1016/j.jj	<i>chuk O. O., Dolg V.</i> Mathematical 1 vclon-4M launch v nit2021.06.003 <i>yev O. D., Khoria</i> asynchronous star ppr.2021.12.001 <i>C.,</i>	(<i>opolov S. I., Nikolayev</i> (nodeling of start-up trans ehicle. <i>k N. V.</i> Dynamic interact rt-ups. Propulsion and Po	. 2000. 13– . 2000. 13–
 18. 12. 13 Pylypei Bashliy POGO- https://c 14. Dolgo, rocket e https://c 15. 2021. 16. Koptil, start-up and Spa 17 	-20 , hko O. V., Prokop I. D.,Polskykh S. suppressors for Cy loi.org/10.15407/k polov S. I., Nikola engines under their loi.org/10.1016/j.jj , 47–17. https yy D., Marchan R. of main liquid pr lice Sciences (1-4 J	 <i>chuk O. O., Dolg</i> <i>V.</i> Mathematical r <i>v</i>clon-4M launch v <i>n</i>it2021.06.003 <i>yev O. D., Khoria</i> <i>asynchronous star</i> <i>p</i>pr.2021.12.001 <i>C .,</i> <i>:</i>//doi.org/10.1540' <i>, Dolgopolov S., I</i> <i>o</i>pellant engine ur <i>u</i>ly, Madrid). 2019 	(<i>opolov S. I., Nikolayev (</i> nodeling of start-up trans ehicle. <i>k N. V.</i> Dynamic interact rt-ups. Propulsion and Po 7/itm2021.04.007 <i>Vikolayev O.</i> Mathematica oder hot test conditions. 8 0. P. 15. https://doi.org/11	. 2000. 13– . 2000. 13–
 18. 12. 13 Pylypei Bashliy POGO- https://c 14. Dolgo, rocket e https://c 15. 2021. 16. Koptil, start-up and Spa 17. 	-20 , hko O. V., Prokop I. D.,Polskykh S. suppressors for Cy loi.org/10.15407/k polov S. I., Nikola engines under their loi.org/10.1016/j.jj 4 7–17. https yy D., Marchan R. of main liquid pr ice Sciences (1-4 J	 bchuk O. O., Dolg V. Mathematical r clon-4M launch v nit2021.06.003 yev O. D., Khoria asynchronous star ppr.2021.12.001 C ., ://doi.org/10.15407 , Dolgopolov S., I opellant engine ur uly, Madrid). 2019 	(<i>opolov S. I., Nikolayev (</i> nodeling of start-up trans ehicle. <i>k N. V.</i> Dynamic interact rt-ups. Propulsion and Po 7/itm2021.04.007 <i>Vikolayev O.</i> Mathematica der hot test conditions. 8 D. P. 15. https://doi.org/10	. 2000. 1 3– . 2000. 1 3–
 18. 12. 13 Pylypea Bashliy POGO- https://c 14. Dolgoj rocket e https://c 15. 2021. 16. Koptili start-up and Spa 17. https://c 18. 	-20 	 bchuk O. O., Dolg V. Mathematical r vclon-4M launch v nit2021.06.003 yev O. D., Khoria asynchronous sta ppr.2021.12.001	(<i>copolov S. I., Nikolayev</i> (nodeling of start-up trans ehicle. <i>k N. V.</i> Dynamic interact rt-ups. Propulsion and Po , 7/itm2021.04.007 <i>Vikolayev O.</i> Mathematica der hot test conditions. 8 . P . 15. https://doi.org/10	2000. 13– .2000. 13– .2017. 234–42. O. D., Khoriak N. V., Pysarenko V. Yu., sients at clustered propulsion system with .2021. V. 27, 63–15. tion between clustered liquid propellant wer Research. 2021. 10(4). P . 347–359. al modeling of transient processes during 8th European Conference for Aeronautics 0.13009/EUCASS2019-236 .2020. 318–29
 18. 12. 13 Pylypei Bashliy POGO- https://c 14. Dolgoj rocket e https://c 15. 2021. 16. Koptil start-up and Spa 17. https://c 18. .: 19. 	-20 ,	 bchuk O. O., Dolg V. Mathematical r vclon-4M launch v nit2021.06.003 yev O. D., Khoria asynchronous stappr.2021.12.001 C ., ://doi.org/10.1540' , Dolgopolov S., I opellant engine ur uly, Madrid). 2019 cm2020.03.018 cm2020.03.018 cm2020.03.018 cm2020.03.018 	(<i>copolov S. I., Nikolayev</i> (nodeling of start-up trans ehicle. <i>k N. V.</i> Dynamic interact rt-ups. Propulsion and Po , 7/itm2021.04.007 <i>Vikolayev O.</i> Mathematica ider hot test conditions. 8 <i>D.</i> P. 15. https://doi.org/10	2000. 13– .2000. 13– .2017. 234–42. O. D., Khoriak N. V., Pysarenko V. Yu., sients at clustered propulsion system with .2021. V. 27, 63–15. tion between clustered liquid propellant wer Research. 2021. 10(4). P . 347–359.
 18. 12. 13 Pylypen Bashliy POGO- https://c 14. Dolgo₁ rocket e https://c 15. 2021. 16. Koptil start-up and Spa 17. https://c 18. .: 19. 	-20 ,	 <i>i</i>, <i>i</i>, <i>i</i>, <i>i</i>, <i>j</i>, <i>j</i>, <i>j</i>, <i>j</i>, <i>j</i>, <i>j</i>, <i>j</i>, <i>j</i>	(<i>opolov S. I., Nikolayev</i> (nodeling of start-up trans ehicle. <i>k N. V.</i> Dynamic interact rt-ups. Propulsion and Po 7/itm2021.04.007 <i>Vikolayev O.</i> Mathematica ider hot test conditions. 8 D. P. 15. https://doi.org/11	2000. 13- .2000. 13- .2017. 234-42. O. D., Khoriak N. V., Pysarenko V. Yu., sients at clustered propulsion system with .2021. V. 27, 63-15. tion between clustered liquid propellant wer Research. 2021. 10(4). P . 347-359. al modeling of transient processes during 8th European Conference for Aeronautics 0.13009/EUCASS2019-236 .2020. 318-29

. ., . 1980. 976 .

21. Dolgopolov S. I. Generalization of Experimental Elasticity of Cavitation Bubbles in LRE Pumps that Differ Significantly in Size and Performance. Sci. innov. 2023. 19(5). P. 71–88. https://doi.org/10.15407/scine19.05.071

22. Zadontsev V. A Third China-Ru 20 September).	A. Experimental Study of LR Pump at C ussia-Ukraine Symposium on Astronaution 1994. P. 285–287.	avitation Autooscillations Reg cal Science and Technology,	gimes. Proceldings of XI AN China. (16-
23.	.,,,		
-	. 2009.	9 100–106.	
24. C	. 229		:
25		"	-
	-	. 2010. 10 89–93.	-
27		2 357–360.	-
•	. 2006. 3 141	-145.	
28	. 1980 3–9.		
29			. 1980.
. 9–14. 30,	,		
-	. 1986 1 90–96.		
31	.,,,		. 1973.
2 151–15 32	7.		
	:	166 .	
33		2007 1	. "
".98-	-108.	. 2007 1.	
34	 /doi.org/10.15407/itm2024.01.003		. 2024. 1.
			08.07.2024,

08.07.2024, 30.09.2024