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Y cTaTTi po3rnsgatoTbCs 3aKOHOMIPHOCTI pyXy CynyTHMKa Ha Malike KpyroBux op6itax mif gieto apyroi
30Ha/IbHOI FapMOHIKM reonoTeHuiany. MeTo AoCnifpKeHb € BM3HAYeHHS NapameTpiB opbiT 3 MiHiMasbHOK
3MiHOIO pafiiyca i BUBYEHHS BNaCTMBOCTEN LuX Op6iT. MokasaHo, W0 3afadya BU3HAYEHHs NapaMeTpiB opbiT 3
MiHiMa/IbHOIO 3MIHOK pafiyca npeacTasBnse TEOPETUYHWIA | MPaKTUYHKIA iHTepec. Lii op6iTh € HainbinbLy 6am3b-
KUMK [0 KennepoBux Kpyrosmx op6iT. MpakTUuHMiA iHTepec [0 Takux Op6iT BU3HAYaETbCH MOX/IMBICTIO X BUKO-
pUCTaHHA 19 HayKOBMX AOCNIAKEHb i CUCTEM CrmocTepeXeHHs 3emni. Ha ocHOBI aHanisy nitepatypu 3po6ieHo
BVCHOBOK, LL|0 0 TeMepiLUHbOrO Yacy Lije He NOBHICTIO N06Y/A0BaHe illeHHs faHOi 3adadi: anropuTM BrU3HaYEH-
Hsl NapameTpiB Op6iT He LinKoM 06rpyHTOBaHUIA | HAAMIPHO YCKNaAHEHWIA; BIACYTHIM aHaniTUYHWI aHani3 CTii-
KOCTi Op6IT MiHiManbHOT 3MiHM pagiyca. [okasaHa eeKTMBHICTb 3acTOCyBaHHSI PO3p06aeHOi paHille Teopii
onucy pyxy CynyTHUKIB Ha Malke KpyroBmx opbiTax Ans BU3HaYeHHs napameTpiB op6iT 3 MiHiManbHOK 3MiHOO
pagiyca. 3 Liiet0 MeTOl A400MpaLboBaHO PilLeHHS NepLLIOro HabAMKEHHS pyXy CYMyTHUKIB Ha Maiike KpyroBux
op6iTax Mpu BMAUBI ApYroi 30Ha/IbHOI FapMOHIKW reomoTeHuiany. Lli pilleHHs [03BONSAIOTb NErKo BM3HAYaTh
napaMeTpy op6iT MiHiMasbHOT 3MiHK pagiyca. MobyaoBaHO ycepeHEHi PIBHAHHSA APYroro HabMVKEeHHS BNMBY
[pyroi 30Ha/IbHOT FapMOHIKM Ha pyX CYMyTHWKA i Ha X OCHOBI 40BeAEHO CTilKiCTb OP6IT 3 MiHIMabHOIO 3MiHOK
pagiyca. Moka3aHo, Lo Apyre Hab/MXKEHHA 3a ManMMK NapameTpamu NMOBHICTIO ONKCYE OCHOBHI 3aKOHOMIPHOCTI
[0BronepioAMyYHOro pyxy CynyTHWKa Mpu BNAWBI APYroi 30HaNbHOI rapMOHIKV reonoTeHuiany. 3a AOMNOMOrow0
YMCNOBMX [OCNIMKEHb MOKa3aHa HECTINKICTb Op6iT 3 MiHIMaNbHOK 3MIHOK pajiyca npw BpaxyBaHHI BRAuBY
6ibLU BYCOKOrO MOPAAKY FrapMOHIK reonoTeHuiany. AHanis 06n1acTi MOX/IMBOrO 3aCTOCyBaHHA Op6IT MiHiMasb-
HOT 3MiHW pagiyca NoKasas, L0 NPaKTUYHE 3HaYeHHs TaKi Op6ITU MOXYTb MaTV A5 fyXe HU3bKWX i HaAHN3bKUX
op6iT, fie KepyroUnii BMIMB Ha PyX CYNYTHUKA 3AINCHIOETLCA He PiALLe, HiXX pa3s Ha ABi fo6u.

KntoyoBi cnoBa: op6iTu MiHIManbHOT 3MiHM BUCOTH, [pyra 30Ha/ibHa rapMOHika reonoTeHuiany, CTiii-
KiCTb Op6iTW, 3aKOHOMIPHOCTI PyXYy.

The article discusses the regularities of satellite motion in almost circular orbits under the influence of the
second zonal harmonic of the geopotential. The aim of the research is to determine the parameters of orbits with a
minimum change in radius and to study the properties of these orbits. It is shown that the problem of determining
the parameters of orbits with a minimum change in radius is of theoretical and practical interest. These orbits are
the closest to Keplerian circular orbits. The practical interest in such orbits is determined by the possibility of
using them for scientific research and Earth observation systems. Based on the analysis of the literature, it was
concluded that the solution of the problem under consideration is not complete by now: the algorithm for deter-
mining the parameters of the orbits are not well founded and unnecessarily complicated; there is no analytical
analysis of the stability of the orbits of the minimum change in radius. The efficiency of application of the previ-
ously developed theory of describing the motion of satellites in almost circular orbits for determining the parame-
ters of orbits with a minimum change in radius is shown. For this purpose, the solutions of the first approximation
of the motion of satellites in almost circular orbits under the influence of the second zonal harmonic of the geopo-
tential have been improved. These solutions make it easy to determine the parameters of the orbits of the mini-
mum change in radius. The averaged equations of the second approximation of the influence of the second zonal
harmonic on the satellite motion are constructed and, on their basis, the stability of the orbits with a minimum
change in radius is proved. It is shown that the second approximation in small parameters completely describes
the main regularities of the long-period satellite motion under the influence of the second zonal harmonic of the
geopotential. With the help of numerical studies, the instability of orbits with a minimum change in radius is
shown with allowance for the effect of higher order harmonics of the geopotential. Analysis of the area of possible
application of orbits with a minimum change in radius showed that such orbits can be of practical importance for
very low and ultra low orbits, where the control action on the satellite movement is carried out at least once every
two days.

Keywords: minimum altitude variation orbits, second zonal harmonic of the geopotential, stability of the
orbits, regularities of motion.

Introduction. The choice of a satellite orbit corresponding to its mission is an
important task, the successful solution of which can significantly increase the effi-
ciency of satellite use. Orbits with a minimum radius variation, or, following [1, 2,
3], orbits with a minimum altitude variation (OMAYV) are of theoretical and practi-
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cal interest. These orbits are the closest to Keplerian circular orbits. Practical in-
terest in OMAV is determined by the possibility of their use for scientific research
and Earth observation systems [1, 3, 4].

The main disturbing effect on the satellite’s motion in low near-earth orbits is
the difference between the Earth’s gravitational field and the central one. The po-
tential of the off-center gravitational field of the Earth can be described using the
expansion in spherical functions

U 2%{1+§%J (CnOPn(sin8)+ %an(siné)(cnmcomwrSnmsinmk)ﬂ (1)

where p — gravitational constant of the Earth; R - the distance from the center of
the Earth to the considered point in space with geocentric latitude & and longitude
A in the coordinate system associated with the Earth; Ry — the average equatori-

al radius of the Earth; C,,, C,,,, S, — dimensionless coefficients depending
on the distribution of the Earth's masses; P, (sin 6) — Legendre polynomials of or-
der n ; P, (sin3) —associated Legendre functions of order »n and index m .

The members of expression (1) containing Pn(sin 8) are called the second,
third, etc. zonal harmonics, and the terms containing P, (sind) - sectorial (at

n=m) and tesseral (at 0<m < n) harmonics. The geometrical meaning harmon-
ics is detailed in [5].

The coefficient at the second zonal harmonic C 4 is three orders of magni-
tude higher than other expansion coefficients (1), and the effects of the second
zonal harmonic describing the compression of the Earth are decisive in the differ-
ence between the trajectory of the satellite and the Kepler orbit.

In [6, 7], a new form of equations for the perturbed motion of a satellite in al-
most circular orbits is proposed. In [7], the first approximation of the influence of
the second zonal harmonic on the motion of satellites was constructed. It is shown
that the maximum value of the amplitude of forced oscillations of the orbital radius
under the action of the second zonal harmonic can reach 3.5 km at an orbital alti-
tude of 675 km. In this regard, the question arises of choosing the initial conditions
for the satellite motion, which ensures the minimum oscillations of the orbital ra-
dius under the influence of the second zonal harmonic.

One of the first publications devoted to OMAV is article [1]. The brevity of
the presentation of the material and the use of special research methods make it
difficult to use the results obtained in [1]. The publication [4] indicates a very
small number of studies on this issue. It seems that an interesting formulation of
the problem of searching for orbits that give the minimum change in the satellite
altitude at a given latitude range is considered in [4]. However, the research meth-
od based on the use of averaged equations and numerical studies of oscillations of
the orbital radius on one revolution does not seem to correspond to the research
goal. Studies of OMAYV are absent in monographs [5, 8, 9]. Quite clear results on
the OMAV are contained in the article [3]. The article is distinguished by the prac-
tical orientation of the materials and the possibility of reproducing the results.
However, the article uses the final formulas of previous studies, some of which are
difficult to access (for example [2]), and the physics of the process is not de-
scribed. At the same time, the determination of the parameters of the OMAV is, as
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will be shown below, an unnecessarily complicated process. In [3], there is no ana-
Iytical analysis of the stability of OMAV.

Thus, the problem of determining the parameters of OMAYV is of interest for
the design of remote sensing satellites, and its solution is currently not complete.
The article proposes a simple way to determine the parameters of the OMAYV, and
an analysis of the stability of such orbits is carried out.

Problem statement. The motion of the center of mass of the Earth’s satellite
is considered, taking into account its perturbations only by the second zonal har-
monic of the Earth’s gravitational field.

The perturbing accelerations acting on the satellite have the form [7]

2
F=- 3CZO#(Ssinzusinzi- 1),
2R

2
F,= 3Czoﬁsin 2usin?i,
2R
2
E= @sin usini,
2R

where F;, F,, F5 are radial, transversal and normal accelerations respectively,
i, u are inclination and latitude argument respectively.
Let us write the equations of satellite motion in the form [7]

Ly & 1 . . . r 1 . -9
i ——EWSIHZILSIHZZ, Q ——ZSWCOSLSIH u,
81/2 81/2
Au'=|=——-1|-Q'cosi, v =-2e—sin®isin2u, (2)
2 2
-b 1, . .
by =b,, by = 7231 +82—4(35|n2ism2u -1),

where the prime denotes the derivative with respect to u (u is the argument of

the latitude of the unperturbed orbit, u= /% R, - the radius of the unper-
0
2
L
2 )
Ry
dimensionless variables b;,b,,y are related to the current position and speed of

the satellite by the relations
R=Ro(l+by), R=byJu/R,, p=Ro(l+y)

where p is the focal parameter of the orbit; z =1+b; is dimensionless orbital
radius equal to the ratio of the orbital radius to the reference orbit radius; s =1+y
is dimensionless focal parameter of the orbit, equal to the ratio of the focal param-
eter of the orbit to the focal parameter of the reference orbit; Au =u —u .

It is necessary to determine the existence of orbits with a minimum radius var-
iation and their properties.

turbed circular reference orbit); e= - EC20 Q - ascending node longitude;
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Determining the orbits of the minimum radius variation. Since almost cir-
cular orbits are considered, then b,, by, v are small quantities, the order of which

does not exceed an order of magnitude ¢ (for R,=7000 km, £=1.35-10%). We

obtain the equations of the first approximation, keeping in equations (2) only the
quantities of the first order of smallness [7]

i’ = —0.5¢sin 20 sin 2i, Q' =-2¢cosisin’{,
Au'=0.5y—2b, —Q'cosi, y'=-2esin?isin2d, (3)
b =b,, by =y —b, +&(3sin?isin? i —1).

Without loss of generality, we assume that at the initial moment of time
u=u =0, i.e. the trajectory “starts” at the ascending node of the orbit. Then, with

the considered accuracy " = max{e,b;,b5,7v}, one can find the following solu-
tions [7]

Ai =i -1 :isin 2iy(cos2u —1),
€ . ~ . ~
AQ=Q-Q, Z—ECOSLO(ZJ —sin2z),

Ay =v—yo =&sin%iy(cos 2z —1), (4)

where the subscript “0” denotes the initial values of the variables.
The equation of change b is written in the form [7]

b{ +b, =—§sin2iocos%[+y0+s(%sin2i0—1j. (5)
Taking that
1.
2
we obtain that equation (5) describes harmonic oscillations b, relative to the zero
position. Condition (6) is not a restriction on the values of the focal parameter

(transverse satellite velocity) due to the absence of restrictions on the radius of the
reference orbit R, .

Then, the equation describing the change will take the form
b +b, = —%sin2 i COSL.
We write its solution in the form

by =byoCOSL +b]gSinu +%(cosz'[—cos{£):A cos(i—a)+%(cosz'i—cosi), 7)
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where d =§sin2 ig; A,a are amplitude and phase shift of natural oscillations,

d /3 is amplitude of forced oscillations, b;q,b;, are the initial conditions for

changing the orbit radius at its ascending node.
In the general case, expression (7) is doubly periodic: oscillations with a dou-
bled orbital frequency are added to oscillations with an orbital frequency. It is easy

to understand that the minimum deviation b; from zero is achieved when the am-
plitude of oscillations with the orbital frequency is equal to zero. Consequently, for

b1o :%asin2 iy and by =0, the change in the radius of the orbit will be minimal

and equal to

1 . 1 . R
DR= EROesm2 ipcos2fp maxDR= - 7Cx sin? iORE}TE.
0

For an orbit with an altitude of =500 km, the amplitude of the radius change
will be =1.6 km (C 5, =—1.0826-103, Ry =6378.1363 km).
The change in the radius of the orbit in this case is described by the equality

by ~ 9 cosar ,
3

and has the property of symmetry about the center of mass of the Earth.

Let us complete the construction of the solution to equations (3). Substituting
(7), (4) with condition (6) into the equation of change Au =u —u and integrating,
we obtain

Au =0.5¢(3—3.5sin? i) +0.5¢sin ZU(Zsinz i —1]+
° (®)

+%gsin2 isind —2A(sin(d — o) +sina).

Let us estimate the period of the satellite’s motion between two successive in-
tersections of the ascending node — the nodal (draconian) period. Let for the time
when u changes by 2r the change in u is equal to 2n—3&. Then the change in
Au =9 for the same time. Consequently, & is small, and to estimate the nodal pe-
riod with accuracy up to the square of small values from (8) we obtain

§=¢(3—3.5sini)x.
Consequently, during the nodal period w© change by the value
2n(1—0.5¢(3—3.5sin?i)) . The time of such a change is equal to

3
Py = |0 2r(1-0.56(3 - 3.5sin2 i),
n

where P, is the nodal period.

For comparison with the well-known formulas [5, 8, 9], we note that, up to a
square of small values, the semi-major axis of the orbit a is equal to
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R,

a= .
1-v¢

Consider changing the trajectory depending on u . For this, in the equations
of perturbed motion (2), we pass from the independent variable & to the inde-
pendent variable u . In the general case, such a transition leads to the fact that the
right-hand sides of the equations will differ in the presence of an additional multi-

-1
1/2 - ~ 2
plier s 5 —CtgisinuFg | , where Fg =%F3.
z us

Expanding this multiplier in a series in small quantities keeping only the first

order of smallness, we obtain

2

1/2 N\t ~
[S——Ctgisinu%J ~ (1+0.5y —2b; —ctgisinuFg).
z

Consequently, the equations of the first approximation (3) will not change
when passing to differentiation with respect to u . And, consequently, their deci-
sions will remain in effect when u s replaced by u . Taking into account the
physics of the process, replacing z in solutions with u will give a more accurate
approximation.

Thus, the change in the radius of the orbit in the first approximation is de-
scribed by the expression

b, = bycosu+ by sinu+ %(cosZu- cosu )=
d
= Acos(u- a)+ 5(cos2u- cosu)

where by =R /Ry —1; R, R are the radii of the orbit and the reference circular

orbit, respectively. The initial conditions of movement for OMAV are

b1o =d§,b1’0 =0, and the change in the radius of the OMAYV is described by the

equality
b, = dgcoszu :

In this case, the initial value of the focal parameter is equal to
Po=Ry(1+7o), where y, is determined by the equality (6).

For the convenience of converting into other variables, we present the expres-
sions for the initial radius and speed of the satellite in the ascending node of the
OMAV. The radius is

R =R0(1+%sin2 iO),

and the velocity is directed strictly along the transversal and is equal to
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v o _ [ \/1+ 0.5¢(1+cos’ i)
R Ro 1+ Zsin?i
6

Stability analysis of OMAV. The equations of the first approximation do not
allow us to draw conclusions about the stability of the OMAV. For theoretical
studies of stability, it is necessary to consider the equations of the second approx-
imation. To do this, consider the equation of perturbed motion with an independent
variable u

.y € w . R . ' w . -9
i'=————=sin2usin2i, Q'=-2¢————co0sisin“u,
22%.s 23.s
Au’zw(iz—l]—sz'cosi, v =—2cw £zsinzisinzu, (9)
2 2
bi=wby,  by=w Il e™ (35in2isinu -1),
z 2
1
where w = £{Z+28%C032i3in2u .
2 24s

It can be seen from equations (9) that the change in the shape of the orbit (pa-
rameters b;, b,) does not depend on the changes Q (due to the axial symmetry of

the equatorial hump). Therefore, to study the stability of OMAV, it is sufficient to
investigate the equations for i,v,b;,b,.

We introduce new variables: i =i; +iq, y=Y7 +79, Where subscripts 1 and 2
denote the components of the solution of equations (9) proportional to the first and
second degrees of smallness, respectively.

To describe changes in the shape of the orbit in the second approximation, we
introduce new variables as follows

b; =A cosfu —a) +d /3(cos2u —cosu),
by =—-Asinw —a) +d /3(sinu —2sin2u).

Then

A =—C; [2cosmsin(¢—oc)—25in(¢ +a)+sina]+b1r COS{t —ar) —by,. SinfL —0),
Ao =A +§ [2c0s2ucos( — ) + 2¢O +0) —COSt]+by,. Sinfe —ar) +by,. COSE — 1),

where by,.,b,,. are the right-hand sides of equations (9) for b, b,, respectively.

Let us construct the averaged equations for the second approximation. For
this, we substitute new variables into equations (9). Keeping the quantities no
higher than the second order of smallness and averaging the resulting equations
over u , one can obtain
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o~
Il
(=)

2=0,7,=0,

Aa' =2Ac-5Ad +gd2 cosa—gdscosaz -AG +d§G cosa,  (10)

Z’:%d sin o(5d —28):%G sina,
where the “hat” denotes the average values; G =5d —2¢.
The system of equations (10) can be easily solved by introducing new varia-
bles A=A cosa, h =A sina. .The change in these variables is described by the
equations

A =Gh,
h’=iG -Gh.
3

The sought solutions for G >0 and G <0 can be written in the form

Asina = —(Ko COS Ol —%)sin Gu + Ay sina, cosGu,
d d (11)
Acosa = §+(KO oS o —chosGu + A sina sinGu,

where A, o, are the initial conditions of the averaged equations.

The results of numerical studies show that when G is of order ¢, the aver-
aged equations describe well long-period changes in the shape of the orbit. The

case when G is of order gz_requires additional research. Figure 1 shows the
changes in the amplitudes A, A and phase shifts o, o (apogee arguments) of the

complete (2) and averaged equations at 2000 revolutions of the satellite. The solu-
tions of the complete equations shown in the figure by the solid line were carried
out numerically. The solutions of the averaged equations shown in the figure by
circles are given by formulas (11). The initial conditions of motion were taken as
follows: Ry =R, +500km, R, =6371km, i,=981°, Ay=d/3,

o9 =—10° v = 8(1—0.5Sin2 io)-

500 750 1000 1250 1500 1750  u/2nm

0 250 500 750 1000 1250 1500 1750  u/2x
Fig. 1
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Calculations show that the second approximation in small parameters com-
pletely describes the main regularities of the long-period satellite motion under the
influence of the second zonal harmonic of the geopotential except for the cases

when sin? ip =0.8. The averaged equations make it possible to solve the problem

of the stability of the orbits with a minimum change in altitude. We rewrite solu-
tions (11) in the form

Asina = -Bsin(Gu - 1),

_ 12
Acos&=%+ B cos(Gu - 1), (12)

2
where B2 =[Z0 —dgj +2X0d§(1—cosao) is amplitude of long-period oscilla-

Zocosao—i
tions, t is phase shift of long-period oscillations, COSTzT?’,

) A, sina,
sing=-0>_""0

It is easily seen from (12) that there is only one equilibrium position

Z:%, o =0. This equilibrium position is stable and, with small deviations, the

variables A, h fluctuate relative to it with an amplitude B . When B g%, the ap-

ogee fluctuates —g <a sg .When B > dg the apogee of the orbit rotates.

Scope of possible application of OMAV. OMAYV give an estimate of the
minimum possible change in satellite heights. In fig. 2, for the initial conditions,
Ry =R, +507km, R, =6371km, i,=974°, Ay=d/3, agy=0,

Yo = s(l—O.Ssin2 io), the change in the orbital height relative to the mean radius of
the Earth on the first two turns is shown
R-R,,, km

N | NN TN/

VAN
\[L A A

TNV IV VLV

505 u, deg
0 90 180 270 360 450 540 630 720

Fig. 2 — Change in orbital height relative to the mean radius
of the Earth on the first two turns

509

For OMAYV, the orbital radius changes by almost 3.16 km, or 1.6 km relative
to the average. In this case, the maximum values are reached above the equator,
and the minimum - above the poles. However due to the flattening of the Earth, the
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height above the common earth’s ellipsoid changes by almost 18.23 km, or 9.1 km
relative to the average.

Despite the stability of the OMAYV under the action of the second zonal har-
monic of the geopotential, the OMAYV is not stable under the action of other dis-
turbing forces. Calculations show that the main influence on the destruction of
OMAV is exerted by the effects of other zonal harmonics of the geopotential. Fig-
ure 3 shows the change in the orbit height relative to the mean equatorial radius,
taking into account the 30x30 harmonics of the geopotential at 30 turns.

R-RE, km

503
et dhld

502

501

500

499

498 |

497 u, deg
0 1800 3600 5400 7200 9000 10800
Fig. 3 — Change in orbit height relative to the mean equatorial radius,
taking into account 30x30 harmonics of the geopotential at 30 turns

If at the first orbit changes in the shape of the orbit is insignificant, see Fig. 4
(Change in the orbit height relative to the mean equatorial radius, taking into ac-
count the 30x30 harmonics of the geopotential on the first two orbits), then by the
30th orbit it becomes significant, see Fig. 5 (Change in the orbit height relative to
the mean equatorial radius, taking into account the 30x30 harmonics of the geopo-
tential at the 29th and 30th orbits). Changes in the shape of the orbit are associated
with changes in eccentricity and perigee argument.

502 R-RE, km

501\ /\ /\ /\ /

LN

RAVVARVFARNVERVY,
VIVIVTV

408 u, deg
0 90 180 270 360 450 540 630 720

Fig. 4 — Change in the orbit height relative to the mean equatorial radius,
taking into account the 30x30 harmonics of the geopotential on the first two orbits
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Fig. 5 — Change in the orbit height relative to the mean equatorial radius,
taking into account the 30x30 harmonics of the geopotential at the 29th and 30th orbits

Thus, the maintenance of the OMAYV is associated with rather frequent (every
two days) control actions correcting the orbit. For ultra-low and very low orbits,
where compensation of aerodynamic braking requires frequent activation of the
correcting thrusters, the OMAYV can be selected as the reference orbits.

Conclusions.

1. The constructed orbits of the minimum altitude variation (OMAV) are of
theoretical interest, since they determine the minimum possible changes in the
heights of the orbits. For orbits with an altitude of about 500 km, these changes
are: about 1.6 km change relative to mean radius; about 9.1 km relative to the
mean orbital altitude above the Earth's common ellipsoid.

2. The effectiveness of the application of the previously developed theory of
describing the motion of satellites in almost circular orbits for determining the pa-
rameters of OMAV is shown.

3. The averaged equations of the second approximation of the influence of
the second zonal harmonic on the motion of the satellite are constructed and the
stability of the OMAV is proved on their basis. It is shown that the second approx-

imation in small parameters, with the exception of the cases when sin? ip 0.8,

fully describes the main regularities of the long-period satellite motion under the
influence of the second zonal harmonic of the geopotential.

4. Using numerical studies, the instability of the OMAYV is shown when tak-
ing into account the influence of higher-order geopotential harmonics. Preliminary
calculations show that during the two days of flight, the characteristics of the
OMALV are already significantly distorted.

5. OMAV can be of practical importance for very low and ultra-low orbits,
where the control action on the satellite movement is carried out at least once eve-
ry two days.
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