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Po3rnsiHyTo ABO30HA0BMIA BapiaHT HafBMCOKOYaCTOTHOT iHTepdepoMeTpiT Ans BUMIPIOBaHHA NepeMmilLeHHs
MexaHiYHKX 06’€KTiB 3 HEBILOMUM KoediLieHTOM BifouTTs. Llib poboTn nonsrae B NiABULLEHHI TOYHOCTI BUMI-
pHOBaHHS NepeMiLLeHHs Y LIMPOKOMY fiana3oHi koedilieHTa BigouTTs. Ofep)aHo 3a1eXHICTb MOXMOKM BUMIpHO-
BaHHSA Bif MiXX30HAO0BOI BiACTaHi, JOBXVHW 30HAYHOUOT €NeKTPOMArHiTHOI XBUAI Y BiNbHOMY MPOCTOPI, PO3Mipy
LUMPOKOT CTIHKN XBWUNEBIAHOT CeKUii i3 30H4aMu Ta KoeddillieHTa BifOUTTA 06’eKTa 3 ypaxyBaHHSAM BifXWNEHHS
CTPYMiB HamiBMpOBIAHWKOBMX AETEKTOPIB, 3’€AHaHNX i3 30HAAMY, Bif, iXHIX TEOPETUYHUX 3HAYeHb. 3i 36ibLUeH-
HAM [IOBXXMHMW 30HAYHOUOI eNeKTPOMarHiTHOI XBUAI MOXMOKa NPOXoAUTb Yepe3 MiHIMYM Ans KoedilieHTiB Bia-
6MTTA, 6M3bKNX A0 OAVHWL, | MOHOTOHHO 36i/bLUYETLCA ANS MEHLUMX KOediLieHTiB BigOUTTA. Taka noBefiHka
MOXMOKM 3yMOB/EHA TUM, LU0 3i 36iMbLUEHHSM LOBXWUHW 30HAYHOUOI eN1eKTPOMarHiTHOT XBUNi Ta/abo 3MeHLUEeH-
HAM KoeghiLjieHTa BifOMTTA BnacHa nMoxmbka [BO30OHAOBMX BMMIPHOBaHb 3MEHLLYETHCS, Ha TOI Yac SK Noxmoka,
noB’s3aHa 3 BiXWNEHHSAM CTPYMIB AeTeKTOPIB Bif IXHIX TEOPETUUHUX 3HaYeHb, 36i/bLUYETbCSA. 3anponoHOBaHO
METOAUKY 3MeHLLUEHHs MOXMOKW. MeTognka nonsrae y 3MiHi AOBXWHW 30HAYKYOT eneKTPOMarHiTHOI XBuni y
Bi/IbHOMY NPOCTOPI B 3a/71XHOCTI BifJ BUMIPSAHOro KoegiljieHTa Big6UTTA. Y MOPIBHAHHI i3 3arasbHONPUAHATAM
PeXXMMoM poboTK, 3anporoHOBaHa METOAMKA [03BONSE iICTOTHO 3MEHLUMTW MOXUOKY Ans KoedilieHTiB BIgonTTS,
6113bKUX [0 oAMHULI. Ha BigMiHY Bif BiZJOMOT METOAMKM, L0 BUKOPUCTOBYE (DIKCOBaHe 3HAYEHHS! BiHOLLEHHS
Mi>K30H/0BOI BIfiCTaHi [0 AOBXWHW €NeKTPOMArHiTHOI XBUAI Yy XBWUAEBOAI, MEHLLE Bif OAHIEl BOCbMOI, 3anporno-
HOBaHa MeTOZVKa Bi/lbHa BifJ TaKOro Hefonika, ik MoMiTHe 36ibLUEHHS NOXUOKU NpU AOCUTb MaIUX KoedillieH-
Tax Big6buTTA. PesynbTaTy L€l poboTn MOXyYTb 6YTW BUKOPMCTaHi Npy po3pobLi MiKpOXBUIbOBMX BUMIpHOBayiB
nepeMilLLieHHA AN18 Pi3HWMX KnaciB BiBP0O3axyCHNX CUCTEM Ta CUCTEM KePYBaHHS TEXHOMOTiYHUMM NpoLiecamm.

KntoyoBi cnoBa: KOMNAEKCHUIA KoediLieHT BIAOMT TS, eNeKTPUYHUIA 30H[, HA[BMCOKOYACTOTHA iHTep-
thepomeTpisi, HaNiBNPOBIHNKOBUIA e TEKTOP, XBUNEBIAHA CEKLif.

PaccMOoTpeH [BYX30HAOBbI BapuaHT CBEPXBbICOKOYACTOTHOW UHTEPEPOMETPUI ANS N3MEPEHNS Nepeme-
LLEHNs MeXaHUYeCKUX OGBEKTOB C HEM3BECTHbIM KOI(ULIMEHTOM OTpakeHws. Llenb paboTbl 3ak/touvaeTcs B
MOBbILLIEHWN TOUHOCTU M3MEPEHNS NMepeMeLLeHNs B LUMPOKOM AuanasoHe KoadduumeHTa oTpaxeHus. MonyyeHa
3aBMCMMOCTb MOTPELLIHOCTM M3MEPEHUS OT MEX30HLOBOTO PAaCCTOSHUS, AMMHBI 30HAVPYIOLLEN 3NeKTPOMarHnT-
HOI BO/HbI B CBOGOAHOM MPOCTPAHCTBE, pa3Mepa LUMPOKOA CTEHKN BOSIHOBOAHOW CEKLMM C 30HAaMU 1 KO3du-
LIMEHTA OTPAXKEHNS 06BLEKTA C YYETOM OTK/IOHEHUS TOKOB COEAMHEHHDBIX C 30HAAMU NOMYNPOBOAHUKOBBIX [eTeK-
TOPOB OT WX TEOPETUYECKUX 3HAYeHWA. C yBeNMYeHNEeM AMVHbI 30HAVPYIOLLE 3NeKTPOMarHUTHOW BOMHbI MO-
TPELLUHOCTb MPOXOANT Yepe3 MUHUMYM ANs KOIMMULIMEHTOB OTPAXKEHNS, 6NIM3KMX K eAUHULIE, U MOHOTOHHO YBe-
JINYMBAETCA 17 MEHbLUMX KOIMMULMEHTOB OTpaxkeHUs. Takoe noBefeHWe MOrPeLLHOCTY CBA3aHO C TeM, YTO C
YBE/IMYEHWEM [/IMHbI 30HAMPYHOLLEI 3N1EKTPOMArHUTHOW BOMHBI U/MAW YMeHbLLIEHUEM KOIDMULIMEHTA OTPaXKEHUS
CO6CTBEHHASA MOMPELLUHOCTb ABYX30HAO0BbIX M3MEPEHMIA YMeHbLUAETCS, B TO BPEMS Kak MOrpeLLHOCTb, CBA3aHHas C
OTK/IOHEHWEM TOKOB [ETEKTOPOB OT UX TEOPETUYECKUX 3HAYEHWI, yBenuumsaetcsi. MpeaniokeHa MeToamka
YMEHbLUEHWS MOrPeLLHOCT. MeTOoAMKa 3aK/ToYaeTcs B U3MEHEHWUM ANVHbI 30HAMPYIOLLEN 3M1eKTpOMarHUTHO
BO/HbI B CBOGOAHOM MPOCTPAHCTBE B 3aBUCMMOCTY OT U3MEPEHHOTO KO3(h(hmLMeHTa OTpaxeHUs. Mo cpaBHeHUIO
C O6LLENPUHATLIM PEXMMOM paboTbl, MPU KOTOPOM MEX30HAOBOE PacCcTOsHWe paBHO OfHOM BOCbMOW [A/VHBI
3M1eKTPOMArHUTHOM BOJHbI B BO/HOBOZE, MPEL/IOKEHHAS METOAMKA MO3BOMSIET 3HAYMTENBHO YMEHbLUMTL MO-
rPEWHOCTb A8 KO3((ULMEHTOB OTpaXKeHUs, 6aM3KMX K efuHuLe. B OoTaMume OT CyLLecTBYIOLLEn MeTOAKM,
“cnonb3ytoLLeil PUKCMPOBaHHOE 3HAYEHME OTHOLLIEHUS MEX30HAOBOrO PacCTOSHUS K /IMHE 3N1EKTPOMArHUTHOM
BO/IHbI B BO/THOBO/E, MeHbLLEee 0AHOI BOCbMOM, MPefIoeHHas METOANKA CBOBOAHA OT TaKoro HefocTaTka, Kak
3aMETHOE YBE/IMYEHME MOTPELLHOCTM NPU JOCTaTOYHO MasibIX KO3((MLMEHTAX OTPaxKeHUs. PesynbTaTbl JaHHOW
paboTbl MOTYT 6bITb UCMO/b30BaHbl MPU Pas3paboTKe MUKPOBOHOBLIX U3MepUTENel NepeMeLLEHNs Ana pasny-
HbIX K/1acCOB BUGPO3ALLUTHBIX CUCTEM M CUCTEM YMPaBAEHNS TEXHOMOTMYECKUMM NPOLLECCaMu.

KntoueBble €noBa: KOMMANEKCHbI KOIMUUNEHT OTPa>KeHus, 3NeKTPUYECKUn 30HA, CBEPXBbICOKOYA-
CTOTHasA MHTePthepoMeTpUs, NONYNPOBOSHUKOBbI Ae TEKTOP, BONHOBOAHASA CEKLUS.

This paper addresses a two-probe implementation of microwave interferometry for measurement of the dis-
placement of a target with an unknown reflection coefficient. The aim of this paper is to improve the measure-
ment accuracy over a wide range of the target reflection coefficient. The measurement error as a function of the
interprobe distance, the free-space operating wavelength, the width of the broad wall of the waveguide section
with the probes, and the target reflection coefficient is analyzed with the inclusion of variations of the currents of
the semiconductor detectors connected to the probes from their theoretical values. As the free-space operating
wavelength increases, the measurement error passes through a minimum for reflection coefficients close to unity
and increases monotonically for smaller reflection coefficients. This behavior of the error is due to the fact that
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with increasing free-space operating wavelength and/or reflection coefficient the inherent error of two-probe
measurements decreases, while the error caused by variations of the detector currents from their theoretical values
increases. A measurement error reduction technique is proposed. The technique consists in changing the free-
space operating wavelength in accordance with the measured reflection coefficient, In comparison with the con-
ventional operating mode, in which the interprobe distance is equal to the one eighth of the guided wavelength,
the proposed technique offers a significant reduction in the measurement error for reflection coefficients close to
unity. As distinct from an existing technique that uses a fixed value of the interprobe distance to guided wave-
length ratio smaller than 1/8, the proposed technique is free from such a drawback as a marked increase in the
measurement error at rather small reflection coefficients. The results reported in this paper may be used in the
development of microwave displacement sensors for various classes of vibration protection and workflow control
systems.

Keywords: complex reflection coefficient, displacement, electrical probe, microwave interferometry, semi-
conductor detector, waveguide section.

Microwave interferometry is an ideal means for displacement measurement in
various engineering applications [1]. This is due to its ability to provide fast non-
contact measurements, applicability to dusty or smoky environments (as distinct
from laser Doppler sensors [2 — 4] or vision-based systems using digital image
processing techniques [5]), and simple hardware implementation. In microwave
interferometry, the displacement of the object under measurement (target) is ex-
tracted from the phase shift between the signal reflected from the target and the
reference signal. At present, this phase shift is usually determined using special
hardware incorporating a power divider and a phase-detecting processor, which is
an analog [6] or a digital [7] quadrature mixer. In doing so, measures have to be
taken to minimize the nonlinear phase response of the quadrature mixer, which is
caused by its phase and amplitude unbalances.

A two-probe displacement measurement technique was proposed in [8]. In that
technique, the quadrature signals needed for the determination of the phase shift
are extracted from the outputs of two probes placed in a waveguide section one

eighth of the guided operating wavelength A apart. In hardware implementation,

that technique is far simpler than conventional techniques based on quadrature
mixing [6, 7]. Its distinctive feature is the possibility of displacement measure-
ment at an unknown reflection coefficient with as few as two probes, while since
the classic text by Tischer [9] three probes have still been used to determine or
eliminate the unknown reflection coefficient [10, 11]. Theoretically, the technique
gives the exact value of the displacement for reflection coefficients (at the location

of the probes) no greater than 1/ V2 and in the general case determines it to a

worst-case accuracy of about 4.4% of the free-space operating wavelength. In [12]
it was shown that the measurement error can be reduced by going from the conven-
tional kg/8 to a shorter interprobe distance. However, decreasing the interprobe

distance increases the error that is due to variations of the detector currents from
their theoretical values, and this error increases with decreasing reflection coeffi-
cient. The aim of this paper is to improve the measurement accuracy over a wide
range of the target reflection coefficient. This aim is achieved by changing the op-
erating wavelength in accordance with the measured reflection coefficient.

Consider two probes, 1 and 2, with square-law semiconductor detectors
placed | apart in a waveguide section between a microwave oscillator and a target
so that probe 2 is closer to the target (Fig. 1).
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The detector currents J, and J, (normalized to their matched-load values)
are [12]

J, =1+ R% + 2Rcosy (1)
J,=1+R%+2Rsin(y -B) , 2)
4mx I-2,/8
\V:—+¢' B:E —g/ )
A 2| 2y/8

where R and y are the magnitude and phase of the unknown complex reflection

coefficient at the location of probe 1 (for simplicity, in the following discussion
the magnitude of the complex reflection coefficient will be referred to as the re-
flection coefficient), x is the distance between the target and probe 1, A is the
free—space operating wavelength, and the term ¢, which is governed by the wave-
guide section and horn antenna geometry and the phase shift caused by the reflec-
tion, does not depend on the distance x.

The guided operating wavelength kg is related to the free-space operating

wavelength A as follows:

where W is the width of the waveguide’s broad wall.
Let A, be the free-space operating wavelength such that | = . (Ay)/8. Then

the expression for 3 as a function of A will be

ﬁ(x)i[“ -bran) 1}

2| 2 \1-(n /2w P

Let it be desired to find the displacement Ax(t) of the target relative to its ini-
tial position x(t,) from the measured currents J, (t) and J,(t) . As will be shown
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below, this displacement can be unambiguously determined from the quadrature
signals cosy and siny . From Egs. (1) and (2) we have

2
coswzaiz_RR : 3
_a,+asinp-R*(L+sinp)
Sify = 2RcosP ' )

where a, =J, -1, a,=J,-1.
Combining the squares of Egs, (3) and (4) gives the biquadratic equation in R

a12+a§+2a1azsin|3_0

4 . 2
R _[a1+a2+2(1—sml3)]R + 2(L+sinB)

Q)
This equation has two positive roots. Let R, and R, be the greater and the

smaller positive root, respectively. Clearly one of the two roots is extraneous.
Using Egs. (3) and (4), the absolute term of Eg. (5) may be brought to the
form

al +aj +2a,a,sinp
20+sinB)

R? {RZ + 2R[cosy +sin(y — B)]+ 2(1—sin [3)}

Since the absolute term of a biquadratic equation is the product of its roots,

for the extraneous root Rext we have

R, = [R? + 2R[cosy +sin(y — )|+ 2(L—sinp)f' (6)

On rearrangement, the expression for R_,, becomes

R, =|R? + 4R Rsin(y +7,)+4R2], %

where R =1/il—sinﬁi/2 and y, =arcsinR,,.
Using Eq. (7), it can be shown that R, and R are compared as follows:
Ry =R for sin(\y+y1)2—R0/R and R, <R for sin(\y+y1)<—R0/R. Since by

definition R, > R, for the reflection coefficient R we have

R R,, s.in(\p+y1)2—R0/R,
R, sin(y+y,)<-R,/R.

First consider the case R <R . In this case the condition sin(\y+yl)2 -R, /R
is met at any w , and thus the reflection coefficient R is unambiguously determined
from Eq. (5) as its root R,, thus allowing cosy and siny to be unambiguously
determined from Eqgs. (3) and (4). Given cosy and siny, the target displacement

can be extracted using the phase unwrapping method, which is a powerful tool to
resolve the phase ambiguity problem in a number of applications [13, 14]. The
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displacement Ax of the target at time t , n=0,1,2,.., from its initial position
X(t,) can be found by the following phase unwrapping algorithm [15]

siny(t
arctanﬂ, siny(t,) >0, cosy(t,) >0,
cgsw(tn)
siny(t
o(t,)= arctanﬂ+n, cosy(t ) <0, (8)
cosy(t,)
sin(t,)

arctan—————+2mx, siny(t,) <0, cosy(t,) =0,
osy(t,)

Ag(t,) = o(t,) - o, 4). (9)

0, n=0,
0(t,) =1{0(t, ) +Ao(t,), [Ae(t,)|<m n=12 .., (10)

0(t,_ ) +Ae(t,) - 2nsgn[A(p(tn)], |A(p(tn)| >m, n=12,..,

Ax(tn)zj—ne(tn), n=012.., (11)

where ¢ and 6 are the wrapped and the unwrapped phase, respectively.
In the case R > Ry, the root R, will not always be equal to R, but, as will be

shown below, the displacement can also be determined to sufficient accuracy as-
suming that R=R, As shown above, the root R, is extraneous if

sin(\y + y1)< - RO/R . In terms of the wrapped phase ¢, this condition becomes
G <P<Py,
- R,
Where @ =n+v,=7;, @, =21-7,-Y,, ¥, :arcsm?.

In the case ngg/S (1/\/§S R, <1), we have

Y Y
—<v, <y, <—,
4 -T1=7255

whence it follows that the angles ¢, and ¢, are in the third quadrant.
From Eq. (7) it follows that the minimum value of the extraneous root is

2
R =[R2—4ROR+4R§]” =2R, -R. (12)

ext min

Because of this, if the root Ry is less than R it will certainly be equal to

and 1

ext min’

the actual reflection coefficient R. Otherwise, any value between R, ...

may be the actual reflection coefficient.
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If the extraneous root R, is taken as the reflection coefficient, Egs. (3) and
(4) for pna cosy and siny will give their apparent values, for which in view of
Egs. (6) and (7) we will have
_1+Rsin(e—B)-sinp
R L

cosy ,, =
ext

. __1+Rcos¢—sinp[sinp—Rsin(e—p)]
Ve ” Rext COSB .

Eqg. (8) for the determination of the wrapped phase includes the inverse tan-
gent of the ratio siny/cosy . So consider the function F(q)=sin Wap /COSW 5y

P <P<P,

Flo)= 1+ Rcos@—sinp[sinp - Rsin(op—p)]
~ cosP[L+Rsin(p—B)-sinp]

For its derivative with respectto ¢ we have

2| _o R _
i R% -2 R Sln((p+y1) 1} R2[2R§ _1]
~ [+Rsin(e-B)-sinpf ~ [L+Rsin( —B)-sinp]

Thus the apparent wrapped phase o4 is a steadily increasing function of the
actual wrapped phase ¢. Since at the points ¢ =¢, and ¢=¢, the apparent and
the actual phase coincide, this means that the apparent phase also lies between o,

and ¢, , i. e., in the third quadrant. Thus the phase error Ag,, =P — P is

!

220.

0, 0<p<q@, 0, <0<2rm

Agg, () = {arctanF @+n-0, ¢<0<0,.

The phase error Ao, (¢) has a negative minimum at ¢, =m+y; -y, and a
positive maximum at ¢, =2m—y, —y,; where

. R%+2R;
Y4 =arcsin .
Ry
The minimum value of the phase error A, (¢) at o=, is
cosp — Reosly; —v, —B)
1-Rsin(y, —v, —B)

and its maximum value at =g, is

AQg, min = arctan +Y1 Y3

cospP + Rcos(ﬁ +y,+ y3)
1- Rsin([3+yl +y3)

Ay oy (1) = arctan Y+ Ya T
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As can be seen from Eqgs. (9) — (11), the displacement error is governed only
by the phase error at the initial and the current measurement point because the in-
termediate points cancel one another. Because of this, the maximum displacement
error will be

A
‘AXEf‘maX - 4_n(A(permax = APer min )
Fig. 2 shows the ratio |Axer|max/kO :—471:}; (A(per max A(permin)zémax ver-
0

sus R at different values of the ratio A/A, for a standard 23 mm x 10 mm wave-
guide (W =23 mm) and Ao = 3 cm.
3

max

0.05 -
] Md,=1
0.04

0.03
] A2,z 11
0.02-
. , =12
0.01-

0.00 r r r r r r , r .
0.4 0.5 0.6 0.7 ) ) 10 R

Fig. 2

As illustrated, the error & .~ decreases rapidly with increasing 1. However,

increasing A decreases the ratio I/)\g . This, in its turn, increases the contribution
of the error caused by variations of the detector currents from their theoretical val-
ues given by Egs. (1) and (2) (such variations may be due to the effect of the re-
flecting surface shape and orientation and the antenna radiation pattern on the re-

flected wave, electromagnetic noise, etc.). To demonstrate, let us bring the abso-
lute term of Eq. (5) to the form:

al +aj +2a,a,sinp (9, = I, + A, —AJ, P
2@+sinp) 2(1+sinB)

+(9y, + A, ~1 gy + AT, 1),

where AJ: and AJ; are variations of the detector currents from their theoretical val-
ues Jim and Jat.

As the ratio I/kg tends to zero, Jith — ot and 1+sinp tend to zero too, and
thus the contribution of the current variations AJ; and AJ, becomes dominating.
Calculations were conducted to find out an advisable value of the ratio A/A,.

In the calculations, the determination of the relative displacement of a target exe-
cuting a harmonic vibratory motion was simulated. In doing so, variations of the
detector currents from their theoretical values were modeled by random current
noise. The distance x of the target to probe 1 and the detector currents J, and J,

were simulated as
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X(t) = X, + Asin(2nt/T),

4TcXO
}\l 1

v=y, +%Asin(2nt/T), Yo =0+
J = (1+ R? +2Rcosw)(1+ Ar),

3, =[1+R? + 2Rsin(y —p)] 1+ A 1),

where t is the time, A and T are the target vibration amplitude and period, X and
o are the distance x and the phase y at t = 0, A, is the noise amplitude, and ris a
random variable uniformly distributed between —1 and 1.

The calculations were conducted for different values of the ratio kO/VV , the
ratio k/)\o, and the reflection coefficient R at A= 2.5), and A,=0.02. To get
the maximum possible error, the initial phase v, was chosen such that
A(per (WO) = A(Per min *

Fig. 3 shows the error 3max Versus ratio A/A, for five cycles of vibration at
W =23 mm, A, =3 cm, and different values of the reflection coefficient R. As il-

lustrated, at R>R, .. =1/\/§ ~0.71 the error passes through a minimum, while at
R<Rymin it increases monotonically with k/ko . Because of this, the error can be
reduced by operating at Ao if R<R, . and at a longer wavelength if R>R, . .

As follows from Eq. (12), to the range of the actual reflection coefficient R from
Romin 0 0.9 (in free-space measurements, the reflection coefficient can hardly

exceed 0.9) there corresponds the range of the measured reflection coefficient (the
root Rp) from 2R, .. —0.9~0.514 to 0.9. So one should switch to an operating

wavelength longer than 2, only if the measured reflection coefficient exceeds
0.514. An advisable value of the ratio x/xo may be chosen such that the error dmax

averaged over the reflection coefficient range of 0.514 to 0.9 is a minimum. For
W =23 mmand j, =3 cm, the advisable ratio /A, is 1.1.

max — R=09
0.0301 - —R=08 7
1 ----R=07 7

0.020
0.015

0.010 > .

0.005—+

0.000 T T T T T T T
1.0 11 12 1.3 14 A/ 7»0

Fig. 3

In the existing technique [12], an interprobe distance of kg /10 is used instead
of the conventional xg/s in order to reduce the measurement error at reflection
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coefficients close to unity. However, this may increase the measurement error if
the reflection coefficient is rather small. Fig. 4 shows the difference A of the max-
imum error &max for the conventional operating mode (| =const =xg /8) and the

maximum error Smax for the proposed technique at W =23 mm, 2, =3 cm, and
X/XO =1.1 and for the existing technique [12] (I = const :kg/lo). As illustrated,

both techniques significantly reduce the error at reflection coefficients close to
unity; however, the existing technique results in a marked increase in the error at
rather small reflection coefficients, while the proposed technique is free from such
a drawback.

Fig. 5 shows the advisable value of the ratio A/2 , (x/xo) at which the er-

adv’
ror dmax averaged over the reflection coefficient range of 0.514 to 0.9 is a minimum

and the value of this minimum, (Smax)mm, versus the ratio 2, /W . As can be seen
from the figure, advisable values of the ratios A/A,and 2,/W may be chosen as
Mhe =1.1and 1.3<h, W <14,

A
0.02
proposed technique W
0.01 - - - = existing technique [12]
0.00 e TR ———
l"
-0.014 ,
’
0.02 T T T T T T T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 R
Fig. 4
() oy
120_ max/ min
-{ 0.0080
-{ 0.0078
- 0.0076
- 0.0074
- 0.0072
1.02 T T T T T T T T
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Thus, in order to reduce the measurement error in a wide range of the reflec-
tion coefficient, the parameters A, (the free-space operating wavelength at which

I =%,/8) and W (the width of the waveguide section’s broad wall) of a two-probe

displacement meter should satisfy the condition 1.3<X,/W <1.4m, and the free-
space operating wavelength should switch from 1, to 1.1n, if the measured re-

flection coefficient exceeds 0.514.

The proposed method may be used in the development of microwave dis-
placement sensors for various classes of vibration protection and workflow control
systems.
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