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This paper addresses the possibility of displacement measurement by microwave interferometry at an
unknown reflection coefficient with the use of two probes mounted in a waveguide section. The aim of this paper
is to show that the displacement measurement accuracy can be improved by using an interprobe distance other
than its conventional value. The case of an arbitrary interpobe distance is considered. The measurement error as a
function of the interprobe distance and the reflection coefficient is analyzed with the inclusion of variations of the
currents of the semiconductor detectors connected to the probes from their theoretical values. The analysis has
shown that as the interprobe distance decreases, the measurement error passes through a minimum for reflection
coefficients close to unity and increases monotonically for smaller reflection coefficients. This behavior of the
error is due to the fact that with decreasing interprobe distance and/or reflection coefficient the inherent error of
two-probe measurements decreases, while the error caused by variations of the detector currents from their
theoretical values increases. The interprobe distance is suggested to be one tenth of the guided operating
wavelength g. In comparison with the conventional interprobe distance of g/8, the suggested value offers a
marked reduction in the measurement error for reflection coefficients close to unity, while for smaller ones this
error increases only negligibly. This is verified by experiment using both free-space and waveguide measurements.
The results reported in this paper may be used in the development of microwave displacement sensors for various
classes of vibration protection and workflow control systems.
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Microwave interferometry is an ideal means for displacement measurement in
various engineering applications [1]. This is due to its ability to provide fast
noncontact measurements, applicability to dusty or smoky environments (as
distinct from laser Doppler sensors [2 – 4] or vision-based systems using digital
image processing techniques [5]), and simple hardware implementation. In
microwave interferometry, the displacement of the object under measurement
(target) is extracted from the phase shift between the signal reflected from the
target and the reference signal.  At present, this phase shift is usually determined
using special hardware incorporating a power divider and a phase-detecting
processor, which is an analog [6] or a digital [7] quadrature mixer. In doing so,
measures have to be taken to minimize the nonlinear phase response of the
quadrature mixer, which is caused by its phase and amplitude unbalances.

Earlier, a two-probe displacement measurement technique has been proposed
at the Institute of Technical Mechanics of the National Academy of Sciences of
Ukraine and the State Space Agency of Ukraine [8, 9]. In that technique, the
quadrature signals needed for the determination of the phase shift are extracted
from the outputs of two probes placed in a waveguide section one eighth of the
guided operating wavelength g  apart.  In hardware implementation, that
technique is far simpler than conventional techniques based on quadrature mixing
[6, 7]. Its distinctive feature is the possibility of displacement measurement at an
unknown reflection coefficient with as few as two probes, while since the classic
text by Tischer [10] it has been universally believed that at least three probes are
needed to determine or eliminate the unknown reflection coefficient. Theoretically,
that technique gives the exact value of the displacement for reflection coefficients
(at the location of the probes) no greater than 21  and in the general case
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determines it to a worst-case accuracy of about 4.4% of the operating wavelength.
The aim of this paper is to show that this accuracy can be improved by using an
interprobe distance other than the conventional 8g . This aim is achieved by
extending the approach proposed in [8, 9] to the case of an arbitrary interprobe
distance.

Consider two probes, 1 and 2, with square-law semiconductor detectors placed
l  apart in a waveguide section between a microwave oscillator and a target so that
probe 2 is closer to the target. The detector currents 1J  and 2J  (normalized to
their matched-load values) are
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where R and  are the magnitude and phase of the unknown complex reflection
coefficient at the location of probe 1 (for simplicity, in the following discussion the
magnitude of the complex reflection coefficient will be referred to as the reflection
coefficient), x  is the distance between the target and probe 1,  is the free–space
operating wavelength, and the term , which is governed by the waveguide section
and horn antenna geometry and the phase shift caused by the reflection, does not
depend on the distance x.

Let it be desired to find the displacement )(tx  of the target relative to its
initial position )( 0tx  from the measured currents )(1 tJ and )(2 tJ . As will be
shown below, this displacement can be unambiguously determined from the
quadrature signals cos  and sin . From Eqs. (1) and (2) we have
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where 111  Ja , 122  Ja .
Combining the squares of Eqs, (3) and (4) gives the biquadratic equation in R
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This equation has two positive roots. Let 1R and 2R be the greater and the
smaller positive root, respectively. Clearly one of the two roots is extraneous.

Using Eqs. (3) and (4), the absolute term of Eq. (5) can be brought to the form
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Since the absolute term of a biquadratic equation is the product of its roots, for
the extraneous root extR we have

(10)
      212 sin12sincos2  RRRext . (6)

On rearrangement, the expression for extR becomes

   212
000

2 4arcsinsin4 RRRRRRext  , (7)

where   2sin10 R .
Using Eq. (7), it can be shown that extR and R are compared as follows:
RRext  for   RRR 00arcsinsin  and RRext  for

  RRR 00arcsinsin  . Since by definition 21 RR  , for the reflection
coefficient R we have
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First consider the case 0RR  . In this case the condition
  RRR 00arcsinsin  is met at any  , and thus the reflection coefficient R

is unambiguously determined from Eq. (5) as its root 2R , thus allowing cos and
sin  to be unambiguously determined from Eqs. (3) and (4). Given cos and
sin , the target displacement can be extracted using the phase unwrapping

method, which is a powerful tool to resolve the phase ambiguity problem in a
number of applications [11, 12]. The displacement x of the target at time

,nt ...,2,1,0,n from its initial position )( 0tx can be found by the following phase
unwrapping algorithm [13]
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where  and  are the wrapped and the unwrapped phase, respectively.
In the case 0RR  , the root 2R will not always be equal to R , but, as will be

shown below, the displacement can also be determined to sufficient accuracy
assuming that 2RR   As shown above, the root 2R is extraneous if
  RRR 00arcsinsin  . In terms of the wrapped phase  , this condition

becomes

21  , (16)
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In the case 8gl   ( 121 0  R ), we have
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whence it follows that the angles 1 and 2 are in the third quadrant.
If the extraneous root extR is taken as the reflection coefficient, Eqs. (3) and

(4) for для cos and sin will give their apparent values, for which in view of
Eqs. (6) and (7) we will have
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Eq. (8) for the determination of the wrapped phase includes the inverse
tangent of the ratio  cossin . So consider the function   apapF  cossin ,
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For its derivative with respect to  we have
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Thus the apparent wrapped phase ap is a steadily increasing function of the
actual wrapped phase . Since at the points 1 and 2 the apparent and the
actual phase coincide, this means that the actual phase is also between 1 and 2 ,
i. e. in the third quadrant. Thus the phase error  aper is
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As can be seen from Eqs. (9) – (11), the displacement error is governed
only by the phase error at the initial and the current measurement point because the
intermediate points cancel one another. Because of this, the maximum
displacement error will be

 minmaxmax 4 erererx 



 , (13)

(19)
where maxer and miner are the maximum and the minimum value of the
function )( er on the interval  20 .

A straightforward calculation by Eqs. (12) and (13) shows that the error
maxerx  decreases rapidly with decreasing interprobe distance. However, in actual

practice the interprobe distance cannot be decreased below a certain lower limit.
The fact is that with decreasing interprobe distance the detector currents approach
each other, thus increasing the contribution of the error component caused by
variations of the detector currents from their theoretical values given by Eqs. (1)
and (2) (such variations may be due to the effect of the reflecting surface shape and
orientation and the antenna radiation pattern on the reflected wave, electromagnetic
noise, etc.). As a result, at some value of the interprobe distance the error may pass
through a minimum and start increasing.

Calculations were conducted to find out an advisable value of the interprobe
distance. In the calculations, the determination of the relative displacement of a
target executing a harmonic vibratory motion was simulated. In doing so,
variations of the detector currents from their theoretical values were modeled by
random current noise. The distance x  of the target to probe 1 and the detector
currents 1J  and 2J  were simulated as

 TtAxtx  2sin)( 0 ,
(20)
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where t is the time, A and T are the target vibration amplitude and period, x0 and
0 are the distance x and the phase  at t = 0, An is the noise amplitude, and r is a
random variable uniformly distributed between –1 and 1.

The calculations were conducted for different values of the interprobe distance
l and the reflection coefficient R at  5.2A и 03.0nA . To get the maximum
possible error, the initial phase 0 was chosen such that min0 )( erer  .

Fig. 1 shows the ratio maxmax /)8( erger xx  for five cycles of vibration
versus the interprobe distance l at different values of the reflection coefficient R.
As illustrated, with decreasing interprobe distance this ratio passes through a
maximum  (i. e. the error maxerx passes through a minimum) for reflection
coefficients close to unity ( R 1; 0,95; 0,9) and decreases monotonically (i. e. the
error maxerx  monotonically increases) for smaller reflection coefficients (R = 0,7;
0,3; 0,2; 0,1). The nonmonotonity of the error has been discussed above. Its
monotonic increase is due to the fact that for 0RR  (for 8gl 

 21min0R 0,707) the displacement error is governed only by variations of
the detector currents from their theoretical values. As can be seen from the figure,

  1088,0 g gl may be chosen as an advisable interprobe distance because

at this value of l , in comparison with 8gl , the error shows a more than two-
fold decrease for reflection coefficients close to unity while remaining much the
same for smaller ones.
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Fig. 1

In the experimental verification of the proposed technique, the two-probe
measuring setup described in [8] was used. To cover the cases of both small and
near-unity reflection coefficients, free-space and waveguide measurements were
made. In the experiments, the interprobe distance remained fixed, and the ratio

gl   was varied by varying the microwave oscillator frequency. Two frequencies
were used: 9.7 GHz ( 8gl  ) and 8.7 GHz ( 10gl  ). The reflection
coefficient was determined from Eq. (5) as its root 2R .

In the free-space measurements, the target was a 218 mm brass disc put in
motion by an electrically driven crank mechanism. The disc peak-to-peak
amplitude was 10 cm, and the minimum distance between the disc and the antenna
was 58 cm. At 9.7 GHz ( 8gl  ) and 8.7 GHz ( 10gl  ), the measured
reflection coefficient varied between 0.16 and 0.25 and between 0.18 and 0.33,
respectively, i. e. in both cases it was smaller than 707,021min0 R , and
thus the root 2R  gave the actual reflection coefficient. For seven successive full
travels of the disk, the peak-to-peak amplitude error was 0.23, 0.23, 0.18, 0.18,
0.18, 0.18 and  0,19 mm at 9.7 GHz  ( 8gl  ) and 0.35, 0.39, 0.39, 0.39, 0.39,
0.39, and 0.35 mm at 8.7 ГГц ( 10gl  ). Thus for these small values of the
reflection coefficient the peak-to-peak amplitude measurement error at 8.7 GHz
( 10gl  ) does not increase much in comparison with 9.7 GHz ( 8gl  ).

In the waveguide measurements, a short-circuiting piston was mounted at the
end of the waveguide section with the probes in place of the horn antenna used in
the free-space measurements. The displacement was measured as the piston was
moved every 1 mm (in the piston displacement determination, the guided
wavelength g was used in Eq. (11) in place of the free-space wavelength ). Fig. 2
shows the displacement measurement error erx  (a) and the measured reflection
coefficient R2 versus the piston displacement x for 9.7 GHz ( 8gl  ) and 8.7
GHz ( 10gl  ). The measured reflection coefficient shows near-unity plateaus
and valleys. The plateaus correspond to the actual reflection coefficient, and the
valleys occur where the root R2 becomes extraneous, which also manifests itself as
the increase in the displacement error observed at the location of the valleys. As
follows from Eq. (7), the extraneous root reaches its minimum at
  10  Rarcsinsin , and this minimum is

0min 2RRRext  .

At 8gl  , 210 R and 41.01222 0min  RRRext . At

10gl  ,   81.021.0sin10 R and 62.0181.022 0min  RRRext .
The measured values of minextR at 8gl  and 10gl  are 0.28 и 0.57,
respectively, i. e. they are in satisfactory agreement with the calculated ones.

As can be seen from the figure, the maximum displacement error decreases
from 1.8 mm at 8gl   (4.3% of  g 4.18 cm) to 0.6 mm at 10gl   (1.2%
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of  g 5.21 cm). The decrease in the displacement error in this case (a near-unity
reflection coefficient) is much greater than its increase in the case of a small
reflection coefficient discussed above.
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Fig. 2

Thus when measuring the displacement of a target with an unknown reflection
coefficient by microwave interferometry with the use of two probes, the
measurement error can be reduced by going from the conventional interprobe
distance of 8g to 10g . The proposed technique may be used in the
development of microwave displacement sensors for various classes of vibration
protection and workflow control systems.
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