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B 0CHOBI AiarHOCTMKM NOTOKIB HWU3bKOTEMMNEPATYPHOI Ma3Mn LIMATHAPUYHAMUN 30HAAMU NEXUTL KnacuyHe
CMiBBiAHOLUEHHS JleHrMIopa 15 iOHHOTO CTPYMY Ha TOHKUIA BiHOCHO AebaiBcbKoro pagiyca uuniHap. MeToto
CTaTTi € AOCNIAKEHHs 3aCTOCOBHOCTI CMiBBIAHOLWEHHSA JleHrMiopa A8 uuniHgpa 3 padiycoM, NepeBuMLLYyYUM
[e6aiBCbKMiA pajiyc eKpaHyBaHHS.

BrKoHaHO 41CcioBe MOAENOBaHHA B3aEMOZIT MPOBIAHOrO LMAiHAPa 3 NOTOKOM PO3pigjKeHoi nnasmu. Linni-
HAP 3HAXOAUTBLCA Mif HEraTUBHUM NOTEHLiaIoM LWOAO nnasmMn. MoaentoBaHHs BiflbHOMONEKYNSPHOTO 06TiKaHHA
npoBefeHO Ha OCHOBI [JBOBMMIPHOI cUCTEMU PiBHAHb BnacoBa—llyaccoHa. Mpw pospaxyHKy BiALLUTOBXYHOUOro
€M1eKTPOHN NOKa/IbHO PIBHOBXXHOTO CaMOY3rOKEHOr0 eNeKTPUYHOro Mons BUKOpUCTaHa Mofenb [MyaccoHa—
BonbLMaHa B HabNVKEHHI NOKaIbHO PiIBHOB&XXHWX €M1EKTPOHIB i 3 ypaxyBaHHAM CTOKY efeKTPOHIB Ha MOBEpPXHi
LmniHapa B HabnMKeHHI LeHTpanbHOro nons. PiBHAHHA Bnacosa f15 ioHiB i NyaccoHa—bonbLMaHa ans camoys-
FO[DKEHOrO eNeKTPUYHOro MoNs PO3B'A3aHi Ha BKMaAeHMX CiTKax KiHLEBOPI3HWLEBMM METOOM YCTaHOB/EHHS 3
pO3LLUENNeHHAM 3a (i3VYHUMK NpoLecamm i BUKOPUCTaHHAM MeTOAY XapakTepucTuK. BiporigHicTb oTpuMaHmnx
pe3ynbTaTiB MiATBEPHKEHO PO3B'A3aHHAM BiJOMUX MOAENbHWX 33fay, MOPIBHAHHAM 3 pe3ynbTaTamu po3paxyHKiB
iHLWINX aBTOPIB i pe3ynbTaTaMu PO3B'A3aHHSA OAHAKOBMX (i3UYHMX 3afa4 3 BUKOPWUCTAHHAM Pi3HMX MaTeMaTU4HKX
MOZENei | MeTogB.

Po3paxoBaHo iOHHi CTpyMM Ha NMOMepeyHo O6TIYHWIA LMAIHAP Y 3a1eXHOCTI Bif Oro noTeHLiany, ioHHOro
LUBMAKICHOTO BiJHOLLEHHS | XapakTepHOro po3Mipy LmniHgpa BiAHOCHO AebaiBCbKOro pafiycy ekpaHyBaHHs. 3a
pesynbTaTaMu YKCNOBOr0 MOZEMHOBAHHA OTPUMaHI KifbKiCHI OLiHKM 061acTi 3aCTOCOBHOCTI K/TAaCUYHOIO CriB-
BifHOLEHHA JleHrmMiopa Ans iOHHOro CTPYMy Ha UWAiHAP i3 pajiycoM, nepeBuLLytounM AebaiBCbkuid pagiyc
eKpaHyBaHHS. OTpUMaHi pe3ynbTaTyi MOXYTb 6YTW BUKOPUCTaHI B AiarHOCTUL Hafi3BYKOBMX MOTOKIB HW3bKOTe-
MnepaTypHOI Po3pigKeHOT Niasmu.

Knto4oBi cnoBa: NOTIiK pPo3pif>KeHOi Hei30 TepMiyHOT nnas3mu, nonepeyHe BilbHOMONEKYNAPHE 06TiKaHHS
[0BrOro Kpyrosoro UyniHApy, YACnoBe MOJENIOBaHHA, CUCTeMa PiBHAHL Bnacosa-yaccoHa, po3paxyHoK iOHHOro
CTPYMy Ha LuniHap.

The diagnostics of low-temperature plasma flows using cylindrical probes is based on the classical Lang-
muir relation for the ion current to a thin, in comparison with the Debye length, cylinder. The aim of this work is
to study the applicability of the Langmuir relation for a cylinder whose radius exceeds the Debye length.

The interaction of a conducting cylinder with a rarefied plasma flow was simulated numerically. The cylin-
der had a negative potential with respect to the plasma. Free molecular flow around the cylinder was simulated on
the basis of a two-dimensional system of the Vlasov-Poisson equations. The electron-repulsing local equilibrium
self-consistent electric field was calculated using the Poisson—Boltzmann model in the approximation of local
equilibrium electrons and taking into account an electron sink on the cylinder surface in the central field approx-
imation. The Vlasov equations for ions and the Poisson—Boltzmann equations for the self-consistent electric field
were solved on nested grids by a finite-difference relaxation method with splitting by physical processes and using
the method of characteristics. The reliability of the calculated results was confirmed by the solution of known
model problems and a comparison with the results of other authors and the results of solving identical physical
problems with the use of different mathematical models and methods.

The ion current to a cylinder placed transversely to a plasma flow was calculated as a function of the cylin-
der potential, the ion velocity ratio, and the ratio of the characteristic dimension of the cylinder to the Debye
length. From the calculated results, numerical estimates were obtained for the range of applicability of the classi-
cal Langmuir relation for the ion current to a cylinder whose radius exceeds the Debye length. The results ob-
tained may be used in the diagnostics of supersonic flows of a low-temperature rarefied plasma.

Keywords: rarefied nonisothermal plasma flow, transverse free molecular flow around a long circular cylin-
der, numerical simulation, system of VIasov—Poisson equations, calculation of the ion current to a cylinder.

Introduction. The probe method of plasma diagnostics is still in demand as a
simple and reliable method for determining the parameters of low-temperature
plasma. Due to the simplicity of the equipment and acceptable measurement accu-
racy, stationary cylindrical Langmuir probes are successfully used to study the Ki-
netic parameters of the charged components of the ionospheric plasma, at laborato-
ry modeling of ionospheric conditions, testing and calibrating scientific on-board
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equipment at the developing stage in space experiments, and also to control tech-
nological plasma processes.

The main elements of a probe measuring system are a measuring electrode
(probe) with a current-collecting surface area S, and a reference electrode having

electrical contact with the plasma on the surface with an area of Sg,. For the
measurement scheme of a single Langmuir probe, the ratio of the reference elec-
trode to probe areas Sg = scp/sp must satisfy a rather strict condition S, >107,

which is not always easy to meet when using the spacecraft body as a reference
electrode. In such a situation, it is proposed to use an isolated probe system that is
not electrically connected to the spacecraft body [1].

The ion current collected by the cylindrical electrode is three orders of magni-
tude smaller than the electron current. Therefore, when diagnosing a rarefied
plasma using the ionic part of the current-voltage characteristic, the area of the
current-collecting surface and the negative potential of the probe relative to the
plasma must be large enough for reliable measurement of ion current.

When interpreting measurements with cylindrical probes, the asymptotic rela-
tion obtained by I. Langmuir and H. Mott-Smith [2] which was developed further
in [3] for the ion current collected by a thin cylinder in a collisionless plasma flow

is used:
l(0e)= 2/ Y2452 ~Bo. . o <Si°/B, @)

where I; is the ion current on the cylinder related to the thermal current of ions,
B=T,/T; is the ratio of the temperatures of electrons T, and ions T;, S; =V/u; is

the ion velocity ratio, V is the mass velocity of the plasma flow, u; = /2kT; /m; is

the thermal velocity of the ions, m; is the ion mass, o, is the dimensionless poten-

tial of the cylinder relative to the unperturbed plasma potential (electric potential is
normalized by KT, /e, where k stands for the Boltzmann constant, e is the ele-

mentary charge). Here and below, the index i corresponds to ions, e — to elec-
trons. Relation (1) is obtained under the assumption that the ratio of the character-
istic dimensions of the body and plasma & =r. /Ay (r, is the cylindrical electrode
base radius, Ap is the Debye length) is small, i.e. & < 1.

In [4] a procedure was developed for determination the flow parameters of a col-
lisionless plasma with two ion sorts by the current-voltage characteristic of an isolat-
ed probe system with cylindrical electrodes for an arbitrary probe-to-reference elec-

trode surface areas ratio S, . It is shown in [5] that, in order to reliably determine the

electron density and temperature together with the ionic composition of the plasma
with two-sorted ions, measurements are required at probe bias potential up to several
tens of volts relative to the reference electrode potential. Fig. 1 represents in a di-
mensionless form the dependence of the equilibrium potential of the reference elec-
trode ¢, on the probe bias potential ;, relative to the reference electrode for vari-
ous values S of the electrodes area ratio in the probe system. It can be seen that at
S, <200 large values of the bias potential ¢;, lead to large negative potentials of
the reference electrode with respect to the plasma.
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The base radius of the cylindrical reference electrode of the probe system rg,

must be significantly larger than the base radius of the probe r,. For the optimal

choice of the characteristic dimensions of
cylindrical electrodes, it is necessary to
know the applicability limits of relation (1)
for the velocity ratio S;, cylinder potential

¢, and parameter &.

It is known that to model the interaction
of a charged body with a rarefied plasma at
nonrelativistic velocities in the absence of an
external magnetic field, it is sufficient to use
the self-consistent system of VIasov—Poisson
equations. Results of numerical calculations
200 of ion current collection in a free molecular
flow around a cylinder, obtained in the ap-
proximation of a symmetric electric potential

Fig. 1 field, are presented in [6]. The flow of rare-

fied plasma around a cylinder that is “large”

relative to the Debye length, usually involves an asymmetric spatial distribution of
the potential around it, which complicates the calculation of the parameters of un-
perturbed plasma. lon current on the cylinder in asymmetric potential field is cal-
culated in [7] on the basis of the two-dimensional stationary Vlasov-Poisson mod-
el with Boltzmann electron distribution. Calculations of ion current on the cylinder
using the two-dimensional Vlasov-Poisson model, which includes the kinetic
equation for electrons, is performed in [8]. Based on the results of these calcula-
tions, relation (1) for ion current on the cylinder in a collisionless honmagnetic
plasma flow is estimated to be applicable for negative cylinder potential ¢, of up

to -25, for parameter & from 1 to 100, and a velocity ratio S; from 0 to 10.

Results of numerical calculations of ion current collection in a free-molecular
transverse flow around a cylinder, obtained using a two-dimensional Vlasov—
Poisson model using model electron distributions at negative cylinder potential of
up to ¢, =-60, parameter & from 1 to 3, and velocity ratio S; from 1 to 7 are
presented in [9]. The current article represents the results of numerical calculations
of the ion current on the cylinder at negative potentials of up to ¢, =-200, pa-

rameter & from 1 to 10, and velocity ratio S; from 3 to 7.
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Formulation of the problem. The interaction of an infinitely long conducting
circular cylinder with a transverse flow of three-component rarefied nonisothermal
plasma consisting of neutrals, positive singly charged ions and electrons is mod-
eled. Let the plasma be Maxwellian, quasi-neutral, the flow around the cylinder is
free-molecular, the influence of the magnetic field is negligible. Flow velocity V,
ion density ny in the undisturbed flow, and the potential of the cylinder ¢, rela-
tive to the potential of the undisturbed plasma are known. The mean free paths of
all plasma components significantly exceed the characteristic transverse dimen-
sions of the cylinder, and the conditions Kn >>Ma >>1 are satisfied for Knudsen
and Mach numbers. It’s assumed that the surface of the cylinder completely ab-
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sorbs the charge of contacting particles (electrons are absorbed, ions are neutral-
ized), and there is no electron emission.

Let’s introduce a rectangular Cartesian coordinate system in the physical
space Oxyz, whose axis Oz is directed along the axis of the cylinder, the axis

Ox — in the direction of the flow velocity. In this case, the velocity distribution
functions of charged particles are five-dimensional, determined by a point in the
four-dimensional phase space and time. The surface of a cylinder of unit length is
modeled by a circle centered at the origin. The potential of the cylinder relative to
the potential of the unperturbed plasma is negative (¢, <0).

Under the mentioned assumptions, the space-time evolution of the distribution
functions of charged plasma particles is primarily determined by the self-consistent
electric field and it is described by the Vlasov-Poisson mathematical model. In the
accepted coordinate system in dimensionless quantities, the system of Vlasov-
Poisson equations writes [9, 10]:

di i gloedhi @)
o ox 20k ov
Ao == —ne(x,0)], = [ fidv. C)
Qy

Here x = (x, y) are coordinates in the physical space, normalized by the base radi-

us of the cylinder r.; v= (vx,vy) are the coordinates in the space of ion velocities,

normalized by the thermal velocity u;; t — time, normalized by r,/u;; B is the
ratio of temperatures of charged plasma particles; & is the ratio of the cylinder
radius to the Debye length; ¢ is the potential of the electric field, normalized by

kT./e; f; (t,x,v) is the ion velocity distribution function, normalized by no/ui2 :
n, is the density of ions; Q,, is the computational domain in the space of dimen-
sionless ion velocities; n,(x,¢) is the model distribution of the electron density.
The densitys of ions and electrons are normalized by the density in the unperturbed
plasma n,.

The ion velocity distribution function f; and potential ¢ satisfy the following
boundary conditions:

o= 105 Hly = 175 X)L, 0, @

Xeaﬁo

fi |‘X‘—)oo
(v,n)>0

(phx‘aoo =0, @y, =@c- ©)

Here, nis the outer normal to the surface of the cylinder 6Q,. On the sym-
metry surface of the problem y =0, the conditions for specular reflection are

specified for the ion distribution function, and the conditions for the symmetry of
the electric field for the potential. Far from the body, the velocity distribution of

ions is Maxwellian. The initial ion distribution function f.°(x,v) is specified using
the analytical solution of the problem of a neutral rarefied gas flow around a cylin-
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der [10] or the previously obtained solution of the problem under similar flow
conditions.

In an unperturbed plasma far from the body, electrons that are much lighter
than other components are locally in equilibrium, and their density is described by

the Boltzmann distribution ne(x,(p)ze“’. In the vicinity of cylinder in a retarding

field, approximate solutions of the Vlasov kinetic equations for Maxwellian elec-
trons in a central field [11] were used as model electron distributions n,(x,o) .

Problem solving method. The Vlasov kinetic equation (2) and the Poisson—
Boltzmann equation (3) are solved by the finite difference method in rectangular
coordinate systems in the physical space and velocity space [9]. In the physical
space, uniform nested grids are used, in the space of velocities, a uniform grid with
cell size providing the necessary accuracy of approximation of the distribution
function is used. Non-uniform grids are used near the surface of the cylinder in
physical space and near the discontinuity surfaces in velocity space. The position
of the discontinuity surface of the distribution function in the velocity space was
corrected by the method of characteristics.

The computational domains in the physical space and in the velocity space are
chosen large enough to cover the region of the perturbation of the plasma flow and
the electric field by the charged cylinder. At the boundaries of the spatial computa-
tional domain, the corresponding physical boundary conditions (4) — (5) are set. At
high flow velocities in the areas where the wake goes beyond the computational
domain boundary, an artificial boundary conditions are used [9].

The general scheme for solving problem (2) — (3) is reduced to two iterative
processes: 1) solution of the Vlasov kinetic equation for ions (2) for a given electric
potential field; 2) solution of the equation for the self-consistent electric field (3) for
a given ion density field. The second iterative process is nested inside the first one. In
each iterative process, to smooth nonphysical changes in the parameters of the prob-
lem, the simplest regularizing operators are used, which are based on the physical
features of the problem like the non-negativity of the distribution function, minimum
energy of the self-consistent electric field, and the regions of monotonicity of the
electric field.

The Vlasov equation (2) is solved by the method of setting with splitting by
physical processes and using the method of characteristics, the Poisson—Boltzmann
equation (3) for a self-consistent electric field is solved by the iterative method. It
is known that local perturbations of the distribution function have little effect on
macroparameters. Therefore, the recalculation of the equilibrium self-consistent
electric field is carried out once per several iterations of the solution of the Vlasov
equation or after a noticeable integral change in the ion density at characteristic
locations such as the space charge region and the wake behind the cylinder. Itera-
tions in the calculation of the potential on each of the nested grids are interrupted
when the specified calculation accuracy is reached, or when the linear rate of con-
vergence is reached.

The consistency of the obtained electric field and ion velocity distribution
function is controlled by calculating the distribution function momentum at a
number of characteristic points near the cylinder surface using method of charac-
teristics. Once the system of Vlasov—Poisson equations (2) — (3) is solved, the cal-
culation of the ion current density per unit length is carried out by integrating the
first momentum of the ion distribution function over the cylinder contour.
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Calculation results. The reliability of the results of solving the Vlasov—Poisson sys-
tem (2) — (3) is confirmed by carrying out test calculations of a number of model prob-
lems, the solutions of which are known and verified by numerous experiments, compari-
son with the results of calculations by other authors and the results of solving identical
physical problems using different mathematical models and methods [9]. The result of
calculation of the collected ion current depending on the potential of the cylinder ¢, at

&= 10, B =1 for various S;, along with the results from [6 — 8], is shown on Fig. 2. The

ion current I; is normalized by the thermal ion current. The curves in the figure corre-

spond to the calculations: 1 — authors, 2 — Godard, Laframboise [6], 3 — Xu [7], 4 -
Choiniere [8]. Calculated ion current fits satisfactorily to the results of solving two-
dimensional Vlasov—Poisson system using the approximation of Boltzmann electrons [7]
and using the kinetic equation for electrons [8]: for all considered flow velocities, the dis-
crepancy in ion current is no more than 3 %. At the velocity ratio of S;=5, the obtained

value of ion current on the cylinder also coincided with the results of calculations in [6]
with satisfactory accuracy. At S; =3, the ion current calculated in [6] using the approxima-

tion of a symmetric electric field differs significantly from the presented here result ob-
tained using the Vlasov—Poisson model. Thus, the two-dimensional mathematical model
of Vlasov—Poisson (2) — (3) makes it possible to carry out numerical simulation of current
collection by a long cylinder in a supersonic rarefied plasma flow with acceptable accura-
cy for diagnostics.
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The influence of parameters &, S;, B on the ion current collected by the con-

ducting cylinder placed transversely in the supersonic collisionless plasma flow is
carried out. Dimensionless potential of the cylinder relative to plasma ¢, varied

from 0 to -200. Results of calculation of the dimensionless ion current depending on
the parameter Bo for £=1, 3, 5, 7, 10 are presented on Fig. 3 at S;=3, Fig. 4 at

S;=5and Fig. 5 at S;=7. Curves on Fig. 3 — 5 stand for: 1 — asymptotic relation (1);
2 —calculation at £=1;3—-at {=3;4—at £=5;5-at £=7; 6—at {=10.
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Calculations of collected ion current at =1, 1.5, 2 revealed weak dependen-
cy of the current on . At low negative potential of the cylinder relative to the

plasma potential, relation (1) approximates well the collected ion current for all
considered range of & and S;. The calculated ion current qualitatively correspond

to the known dependencies: an increase in the parameter & leads to a decrease in
the ion current; as the velocity ratio S; increases, the influence of the parameter &
on the dimensionless ion current wanes.
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The analysis of the obtained results of numerical calculations made it possible,
within the framework of the accepted assumptions, to estimate for various & and S;

such range of potential cp*(?,, S )s ¢, <0 for which relation (1) is applicable.

The lowest limit potential ¢* (for given & and S;), for which the discrepancy be-

tween the ion currents calculated by (1) and by Vlasov—Poisson model doesn’t exceed
1% is presented on Fig. 6 (a), and Fig 6 (b) represents that for 3 % difference in ion cur-
rents.
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Conclusions. Numerical modeling of interaction between the supersonic rare-
fied nonequilibrium plasma flow and conducting cylinder under a negative poten-
tial with respect to plasma is carried out on the basis of the two-dimensional sys-
tem of Vlasov— Poisson equations. The Vlasov equations for ion parameters and
the Poisson—-Boltzmann equations for a self-consistent electric field are solved on
nested grids by the finite difference method of setting with splitting into physical
processes.

The dependences of the collected ion current on the plasma flow velocity, po-
tential and characteristic cylinder size relative to the Debye length are obtained. By
the results of numerical simulation, quantitative estimates are obtained for the ap-
plicability of the classical Langmuir relation for the ion current on a cylinder in the
case of base radius equal to or greater than the Debye length.
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