The problems of evaluation of complex telecommunication - information systems with a plurality of cross communications are examined. A new approach to an analytical evaluation of the reliability was proposed including presentation of complex systems as a circuit of equivalent blocks. The proposed approach allows derivation of the function of the system- failure distribution in an analytical form and determination of the dependency of failure intensities on the failure time as well as a significant simplification of the preliminary reliability evaluation at the stage of the research analysis of the system and formulation of economical requirements for parameters of developed systems.

	firewall- () n1 web- Firewall	, web- n2	,	(- . 1) ,
web-	, , , , , , , , , , , , , , , , , , ,	©	,	,	, 2014 73

$$f(t) = 1 - \exp(-\beta t), \qquad ($$

}.

-_

_

_

$$F(t) = 1 - \exp(-t),$$
 (2)

$$[7].$$

$$F_{c}(t) = P$$

$$p = F(t) = 1 - \exp\{-\}t\},$$

$$q = 1 - p = e^{-3t}, \quad q$$

$$q = 1 - p = e^{-3t}, \quad q$$

$$\frac{1}{q_{c}} = q_{1} \cdot q_{2}, \quad F_{c}(t) = e^{-1zt} = e^{-3t} \cdot e^{-3t} = e^{-(1+t)_{3}t}, \quad q$$

$$p_{c} = p_{1} \cdot p_{2}, \quad F_{c}(t) = P_{c} = (1 - e^{-3t})(1 - e^{-3t}), \quad q$$

$$p_{c} = p_{1} \cdot p_{2}, \quad F_{c}(t) = P_{c} = (1 - e^{-3t})(1 - e^{-3t}), \quad q$$

$$r_{c}(t) = (1 - e^{-3t})^{n}, \quad n > 1$$

$$F_{c}(t) = (1 - e^{-3t})^{n}, \quad n > 1$$

$$F(t) = (1 - e^{-3t})^{n}, \quad n > 1$$

$$F(t) = (1 - e^{-3t})^{n}, \quad n > 1$$

$$F(t)$$

$$r(t)$$

$$r(t)$$

$$r(t) = \frac{f(t)}{1 - F(t)}.$$

$$r(t) = (1 - e^{-3t})^{n} = \frac{1}{1 - F(t)}$$

,

 $r(t) = \} = \text{const},$

$$F(t) = (1 - e^{-t})^{\epsilon}$$

$$f(t) = F'(t) = t \in e^{-t} (1 - e^{-t})^{\epsilon-1}.$$

$$r(t) = \frac{\} \in \cdot e^{-\}t} \left(1 - e^{-\}t}\right)^{\ell-1}}{1 - \left(1 - e^{-\}t}\right)^{\ell}}.$$

$$\ell = 1, \qquad , r(t) = \}.$$

$$\ell \neq 1 \qquad r(t)$$

$$\overline{\mathbf{F}} = \left\{\mathbf{F}_1, \mathbf{F}_2, \ldots\right\}$$

{},€}.

 $F_{c}(t) = 1 - e^{-(\lambda_{1}+\lambda_{2})t}$.

,

 $q_c = q_1 \cdot q_2$

. 2 . 1

13]

,

$$F_{c}(t) = 1 - \left(1 - F_{I}(t)\right)\left(1 - F_{II}(t)\right)$$
$$F_{I}(t) \qquad .$$

$$F_{c}(t) = 1 - \left(1 - \left(1 - e^{-\beta_{1}t}\right)\left(1 - e^{-\beta_{2}t}\right)\right) \left(1 - \left(1 - e^{-\beta_{3}t}\right)\left(1 - e^{-\beta_{4}t}\right)\right).$$
(3)

,

,

.

,

_

.

,

,

,

.

:

$$F_{c}(t) = 1 - \left(1 - \prod_{k=1}^{n} \left(1 - e^{-\beta_{k}t}\right)\right) \left(1 - \prod_{k=1}^{n} \left(1 - e^{-\beta_{k}t}\right)\right), \quad (4)$$

$$n1 \quad n2 - \dots , \qquad n1 \quad n2 - \dots , \qquad m, \qquad -$$
(4) :

$$F_{c}(t) = 1 - \prod_{n=1}^{m} \left(1 - \prod_{k=1}^{ni} \left(1 - e^{-\beta_{k}t} \right) \right).$$
(5)

$$\{\}_1, \}_2, \dots, \}_n\}$$
(5)
$$F(t|\}, \notin) = (1 - e^{-\}t})^{\notin}.$$

.

{},€},

-

$$\min_{\{\}, \in\}} \max_{t} \left| \frac{F_{c}(t) - F(t|\}, \in)}{F_{c}(t)} \right|.$$

2, 3, 5, 8 20

.

1

} €

_
-
~

_

-

-

n_1	n_2	} ₁	}2	}	€
2	2	0,001	0,005	0,000528605	2,03328
3	3	0,001	0,005	0,000509445	3,02326
4	4	0,001	0,005	0,000503539	4,01448
8	8	0,001	0,005	0,000500317	8,00254
20	20	0,001	0,005	0,000500181	20,0195

. 4

 $1 = n2 \quad \{1 = \text{const} \\ \{1, 1, 2\} \quad \in n1 = n2$

,

.

(5),

.

.

 $_{k}$

,

-

_

-

-

-

$$F_{c}(t) = 1 - \prod_{n_{i}=1}^{m} \left(1 - \prod_{k=1}^{n_{i}} F(t, \bar{y}_{k}) \right),$$
(6)

$$k - () , n_i - , m - .$$

,

,

•

:

$$\min_{\{\}, \&\}} \max_{t} \left| \frac{F_c(t) - F(t|\}, \&)}{F_c(t)} \right|$$

$$\min_{\{\}, \&\}} \max_{t} \left| F_c(t) - F(t|\}, \&) \right|.$$

$$\ln F$$

.

,

ln*t* .

,

,

$$f = \ln t_i | y_i = \ln F_i .$$

$$a_0 \quad a_1 \qquad \qquad y = a_0 + a_1 x$$

$$(N \quad \sum_i x \quad \sum_j y) \\ \sum_i x \quad \sum_i x^2 \quad \sum_i xy),$$

,

•

79

_

-

 $t \rightarrow \infty$:

, ,

$$r(t) \rightarrow \frac{\} \in \cdot e^{-\}t} \cdot \left(1 - \left(\in -1 \right) \cdot e^{-\}t} \right)}{1 - \left(1 - \left(e^{-} \cdot e^{-\}t} \right)} = \left\{ \left(1 - \frac{\in -1}{e^{\}t}} \right) \rightarrow \right\},$$

,
$$\left\{ = \sup_{\{t\}} r(t) \right\}$$

$$F(t) = 1 - \exp\left(-\mathbf{r} \cdot t^{r}\right).$$

									2
r.[1]	r[1]	r.[2]	r[2]	r_[1]	$r_{2}[1]$	r ₂ [2]	$r_{2}[2]$	$\cdot 10^4$	€
16 1	IL J		IL J	263	2 L J	2 L J	2 L J	,	
0.001	0.6	0.001	0.6	0.005	0.0	0.007	0.0	0.001.6	1.0.407
0,001	0,6	0,001	0,6	0,005	0,8	0,005	0,8	0,9316	1,3497
	-	7							-
		7							-

2.

_

.

П

,

_

,

$$\Pi = \Pi(\boldsymbol{\in}, \boldsymbol{\cdot}) = \boldsymbol{\in} C_1 + (1 - F_c)C_2,$$

,

1.	•	•		011/ .0/	/	/ .	. ,
		. – http://masters.donr	ntu.edu.ua/2	011/etf/so	leniy/library/		
2.			:		/	. – . :	,
	2003. – 463						
3.				/ .	, .	. – . :	, 1969. –
	488 .						

4.		;/ .	,	.:
5.	, 1984. – 318 	/,	: -	-
6.	, 2006. – 560 . : .			/
7.	· , · · , · · · · · · · · ·	, 1988. – 238 .	/	-
8.	, , // 	. – 2012. –	4. – . 76 – 81. /	,
9.				/
10.	. ,: ,19	975. – 472 .	. 2-	./
11.	– .:« », 1971. – 456 . /	, , . .	, –	:
12.	, 1984. – 192		/ .	,
13.	: , 1988 392 .	/	:	-
	, 1770. – 155 .			

, 27.01.14, , 13.03.14

...,