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Y cTaTTi HaBeAeHO pe3y/bTaTh JOCNIAKEHb 3 MiKPOXBMIbOBWX 30HAOBMX BUMIPIOBaHb, L0 NPOBOAWNCS Y
BigAiNi hyHKUiOHaIbHUX eNeMeHTIB CUCTEM KepyBaHHS IHCTUTYTY TeXHiYHOI MeXaHikvn HauioHanbHOi akagemii
HayK YKpaiHu i [lep>xaBHOro KOCMiYHOro areHTcTBa YKpaiHu Ha MpoTA3i OCTaHHIX N’ATW POKiB. Y pe3ynbTari
LMX AOCnigkeHb po3pobreHo ABO3OHAOBMIA BapiaHT HaABMCOKOYACTOTHOI iHTepdepomeTpii, SKuil [03BONSE
BUMIpOBaTV SIK MEPEMIiLLieHHs MeXaHi4HOro 06’€KTa, Tak i KOMMIEKCHUI KOeqillieHT 3paska matepiany. 3mMeH-
LUEHHS KiNbKOCTi 30HAIB 3 TPbOX (3arafbHOBXMBaHWI BUNAfoK) [0 ABOX CMPOLLYE KOHCTPYKLiIO Ta BUFOTOBNEH-
Hsl XBWNEBIAHOI CeKLil Ta nocnabnoe napasuTHWUI eeKT NepeBiAGUTTIB MiX 30HZaMu. MOXUBICTb BUKOpPUC-
TaHHS TiNbKW ABOX 30HAIB MOKa3aHO LUASXOM aHanidy KOpeHiB PiBHAHHS, SKe NOB’A3ye MOAYNb HEBIOMOro KOM-
NNEKCHOro KoegiljieHTa BigbUTTA 3i CTpymMamy 3’€AHaHMX i3 30HAaMM HaniBNPOBIAHUKOBUX LETEKTOPIB. AHani3
MOKa3sye, L0 TEOPETUYHO MEPEMILLEHHS BU3HAYAETbCA TOYHO AN MOAYNA KoedilieHTa BigdMUTTA, L0 He Nepesu-
wye 22, Ta 3 MaKCUManbHOI MOXUGKOK 6NM3LKO 4,4 % Bif AOBXKWUHI XBUAI 30HAYHOUOMO eNeKTPOMArHiTHOro
BUNPOMIHIOBaHHS Y BiflbLHOMY MPOCTOPI B 3arafibHOMY BUMaAKY, | [a€ YMOBM, 3@ AKUX KOMMAEKCHUIA KoeiLieHT
BIIGUTTA OfHO3HAYHO BM3HAYAETLCA 3i CTPYMIB AETEKTOPIB. HK NOKasam eKCrepuUMeHTU, Npu JOBXUHI XBUAI
€/1eKTPOMarHiTHOro BUNPOMiHIOBaHHA 3 CM, NOABIMHIA amnniTydi konneaHb 06°ekTa 10 i 15 cm Ta yacToTi konm-
BaHb 06’eKTa 6/1M3bK0 2 Il 3aNpONOHOBaHUI METOA BUMIpIOBaHHS MepeMilLieHHs [03BONsE BM3HAYaTW MUTTEBE
3HaYeHHs nNepeMilleHHs 06°eKTa 3 MaKCMMalbHOK NMOXMOKOK 6/113bKO 3 MM Ta CepeAHbO MOXMOKOK 61M3bkK0
1 MM 6e3 6yab-AKOT nonepeaHbLOT 06POBKM AaHMX BUMIPIOBaHb, Takoi K (inbTpallis, 3rnamKyBaHHs, Towlo. Pe-
3ynbTaTW, NPeACTaB/eHi B Ll poboTi, MOXYTb BYTW BUKOPUCTaHI NMpW po3pobLi HaABMCOKOYACTOTHUX AaTUMKiB
nepeMilLieHHs Ta BEKTOPHUX pedieKTOMETPIB.

B faHHOM cTaTbe NpYBEAEHbI pe3ynbTaTbl MCCNEL0BaHWIA N0 MUKPOBOMHOBLIM 30HA0BbIM U3MEPEHUSM, KO-
TOpble NPOBOAWANCH B OTAENE PYHKLMOHAbHBIX 31EMEHTOB CUCTEM YnpaBieHns VIHCTUTYTa TEXHUYeCKoW mMexa-
HVKM HauuoHabHONM akafieMun HayK YKpauHbl U [0CyaapCTBEHHOTO KOCMUYECKOr0 areHTCTBa YKpauHbl B Te-
YeHue MocNefHWX NATW NeT. B pesynbTaTe aTUX UCCNeAoBaHUiA pa3paboTaH ABYX30HAOBLIN BapyaHT CBEPXBbLICO-
KOYaCTOTHOI MHTEP(hepOMETPUM, KOTOPbI NO3BONSET U3MEPATb Kak NepeMeLLeHe MEXaHUYECKOro 06beKTa, Tak
1 KOMMIEKCHbIV KO3th(ULMEHT OTpadKeHNs 0bpasLia MaTepuana. Y MeHbLUeHNe KONMYecTBa 30HA0B C Tpex (06Lue-
NPUHATBIA cayyaid) [0 ABYX YMPOLLAET KOHCTPYKLMIO U U3rOTOB/IEHME BOIHOBOAHOM CeKLMM 1 0cnabnseT napa-
3UTHBIN 3(DeKT MepeoTpaXKeHnidi Mexay 3oHAaMu. BO3MOXHOCTb MCMOMb30BaHUSA TOMbKO ABYX 30HAOB MpoJe-
MOHCTPVPOBaHa C NOMOLLBHO aHanM3a KOpPHel YpaBHEHMS, CBA3bIBAIOLLENO MOAY/b HEM3BECTHOIO KOMM/IEKCHOIO
KO3(hPULMEHTA OTPAXKEHUSA C TOKAMU COEAMHEHHbIX C 30HAAMU MOYNPOBOAHWKOBBIX AETEKTOPOB. JTOT aHaIM3
MOKa3bIBa€eT, YTO TEOPETUYECKUN MEpEMELLLEHNE ONPeAeNSeTcs TOUHO 41 MOAYNs KO3(ULMEHTA OTPXKEHNS, HEe
MPEeBbILLAIOLLIEr0 212y ¢ MaKcMManbHOVA MOrPeLUHOCTLI0 OKOMO 4,4 % OT ANMHBI BOSIHBLI 30HAVPYIOLLETO 3/1eK-
TPOMarHWTHOrO M31y4YeHus B CBOGOAHOM MPOCTPaHCTBE B OOLLEM Clyyae, U LaeT YCN0BUS, NPU KOTOPbIX KOM-
NNEKCHbIN KO3(ULIMEHT OTPaXKeHWNs OfHO3HAYHO OMpefenseTcs M3 TOKOB AeTeKTOpoB. Kak nokasanu akcnepu-
MEHTbI, NPY 4/IMHE BO/HbI 3/1EKTPOMArHUTHOrO M3/Ty4eHnst 3 M, ABOWHOM aMnanTyae KonebaHuin obbekTa 10 u
15 cm u yacToTe KonebaHuin 06bekTa 0KoMo 2 Il MpeasioKeHHbI METOS M3MEepPeHWs NepeMeLLeHns No3BonseT
onpeaennUTb MTHOBEHHOE 3HaYeHMe nepemeLLleHns 06beKTa C MaKCMa/IbHOM NMOrpeLLHOCTBIO 0KO0 3 MM U cpef-
Heli MOorpeLHOCTbI0 0koo 1 MM 6e3 Kakoin-nnbo npeaBapuTenbHON 06paboTKM AaHHbIX U3MEPeHU, Takol Kak
(hunbTpaums, crnaxmeadve U T. N Pe3ynbTaTbl, NPUBELEHHbIE B JAHHOIN paboTe, MOryT ObITb UCMO/b30BaHbI NPy
pa3paboTKe CBEPXBbICOKOYACTOTHBIX AaTYMKOB NepeMeLLeHNs U BEKTOPHbIX PeqIeKTOMETPOB.

This paper presents the results of the investigations into microwave probe measurements conducted at the
Department for Functional Elements of Control Systems of the Institute of Technical Mechanics of the National
Academy of Sciences of Ukraine and the State Space Agency of Ukraine over the past five years. These investiga-
tions resulted in a two-probe implementation of microwave interferometry that allows one to measure both the
displacement of a mechanical object and the complex reflection coefficient of a material specimen. Reducing the
number of probes from three (the conventional case) to two simplifies the design and manufacture of the wave-
guide section and alleviates the problem of interprobe interference. The possibility of using as few as two probes
is demonstrated by analyzing the roots of the equation that relates the magnitude of the unknown complex reflec-
tion coefficient to the currents of the semiconductor detectors connected to the probes. The analysis shows that,
theoretically, the displacement is determined exactly for reflection coefficient magnitudes no greater than the
inverse of the square root of two and to a worst-case accuracy of about 4.4 % of the free-space operating wave-
length in the general case and gives conditions under which the complex reflection coefficient is unambiguously
determined from the detector currents. As shown by experiments, at an operating wavelength of 3 cm, a target
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double amplitude of 10 cm and 15 cm, and a target vibration frequency of about 2 Hz the proposed displacement
measurement method allows one to determine the instantaneous target displacement with a maximum error of
about 3 mm and an average error of about 1 mm without any preprocessing of the measured data, such as filter-
ing, smoothing, etc. The results presented in this paper may be used in the development of microwave displace-
ment sensors and vector reflectometers.

Keywords: complex reflection coefficient, displacement, electrical probe, mi-
crowave interferometry, semiconductor detector, waveguide section.

Microwave measurements are widely used in the determination of various pa-
rameters such as distance, displacement, speed, dielectric permittivity, etc. Micro-
wave interferometry is an ideal means in terms of the development of motion sen-
sors [1]. This is due to its ability to provide fast noncontact measurements and its
applicability to dusty or smoky environments (as distinct from laser Doppler sen-
sors [2—4] or vision-based systems using digital image processing techniques [5]).
An important advantage over radar methods (both traditional pulse ones and re-
cently developed continuous-wave step-frequency ones [6, 7]) is its simple hard-
ware implementation. In microwave interferometry, the displacement of the object
under measurement (target) is extracted from the phase shift between the signal
reflected from the target and the reference signal, i. e. from the phase of the com-
plex reflection coefficient. A characteristic feature of such measurements is phase
ambiguity, which can be resolved by using two quadrature signals in combination
with a phase unwrapping method. At present, the usual way to form the quadrature
signals is to use special hardware incorporating a power divider and a phase-
detecting processor, which is an analog [8] or a digital [9] quadrature mixer. On
the other hand, information on the phase of the complex reflection coefficient is
also contained in the electric field amplitude of the standing wave between the
emitter and the target, which can be measured using an electrical probe and a sem-
iconductor detector connected thereto. The hardware implementation of probe
measurements is much simpler. The investigations into microwave probe meas-
urements conducted at the Department for Functional Elements of Control Systems
of the Institute of Technical Mechanics of the National Academy of Sciences of
Ukraine and the State Space Agency of Ukraine over the past five years resulted in
a two-probe displacement measurement method. In that method, the quadrature
signals needed for the determination of the phase shift are extracted from the out-
puts of two probes placed in a waveguide section one eighth of the guided operat-
ing wavelength A4 apart. Its distinctive feature is the possibility of displacement

measurement at an unknown reflection coefficient with as few as two probes,
while since the classic text by Tischer [10] it has been universally believed that at
least three probes are needed to determine or eliminate the unknown reflection co-
efficient [11]. The theoretical basics of the method are as follows [12 — 15].
Consider two probes 1 and 2 connected to square-law semiconductor detec-
tors. The probes are placed 24 /8 apart in a waveguide section between a micro-

wave oscillator and a target, probe 2 being closer to the target. A measurement
schematic is shown in Fig. 1.
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The detector currents J,, J, normalized to their values in the absence of a re-
flected wave are expressed in terms of the magnitude R and phase y of the com-
plex reflection coefficient at the location of probe 1

J; =1+ R?+2Rcosy (1)

J, =1+ R* +2Rsiny . (2)

Information on the distance x between the target and probe 1 is contained in
the phase of the complex reflection coefficient
dnx
y=—-+90, ®3)
o
where L, is the free-space operating wavelength and ¢ is the phase component that
is governed by the waveguide section and horn antenna geometry and the phase
shift caused by the reflection and does not depend on the distance x.
Let it be desired to find the displacement Ax of the target at time ¢ relative to
its initial position x(ty) . As indicated above, for phase ambiguity resolution in

relative displacement determination it is sufficient to have the quadrature signals
cosy and siny . According to Egs. (1) and (2), these signals are expressed in

terms of the unknown magnitude of the reflection coefficient as follows

2
a—-R
cosy = : 4
v=""k (4)
2
. a,-R
siny = . 5
v=""p ®)

where g, =J; -1 and a, =J, -1.
The following biquadratic equation in R results from Eqgs. (4) and (5)

af+a22 _

R*—(a,+a, +2)R* + 0. (6)
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This equation has two positive roots (the plus sign before the radical corre-
sponds to the root Ry, and the minus sign corresponds to the root R,)

12
Ao a1+a2+2+\/(a1+a2+2)2_af+a§
12 = t :
2 4 2

Clearly one of these roots is extraneous. So the phase ambiguity resolution
problem reduces to the choice between the root R; and the root R, .

An explicit expression for the extraneous root may be obtained by rearranging
the absolute term of Eq. (6). From Egs. (4) and (5) we have

a? =R* +2R%cosy +4R? cos’ v, )

a? = R*+2R3siny + 4R?sin y . (8)

Substituting Egs. (7) and (8) into the expression for the absolute term of Eq.
(6) gives

2, .2
a +a; _ RZ[RZ +2\/§Rsin(\y+n/4)+2]. (9)

Since the absolute term of a quartic equation is equal to the product of its
roots, it follows from Eq. (9) that the positive extraneous root R,,; of Eq. (6) is

Rox = |R? + 2v2Rsin(y + m/4)+ 2|2 (10)

Let us find the condition under which the inequality R,,; > R is satisfied. It
follows from Eq. (10) that this condition is

. e 1
sm(\y + Zj > —ﬁ . (11)

This inequality is satisfied at any value of the phase v if Rs]/ﬁ. Since
R, > R, , in this case the reflection coefficient magnitude R will always be given
by the root R, . In the case R > ]/\/E the condition of (11) will not be necessarily

satisfied. Because of this, the reflection coefficient magnitude R will be given by
the root R, if the condition of (11) is satisfied; otherwise it will be given by the

root R;.

First consider the case Rs]/ﬁ. In this situation, the reflection coefficient
magnitude R is unambiguously determined from Eq. (6) as its root R,, and thus
cosy and siny are unambiguously determined from Egs. (4) and (5). If
cosy and siny are known, the displacement Ax of the target at time
t,, n=0,1,2,.., from its initial position x(f,) can be found by the following
phase unwrapping algorithm [16]
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arctan M siny(t,) >0, cosy(t,) >0,
cosy(t,)
o(t,) =qarctan siny(t,) +m, cosy(t,) <0, (12)
cosy(t,)
arctan M +2m, sinwy(t,) <0, cosy(t,) >0,
cosy(t,)
A(P(tn) = (P(tn) - (P(tn—l) ) (13)
0, n=0,
0(t,) =10(t, 1)+ Ao(t,), [Aet,)|<m, n=12,.., (14)

0(ty—1) +Ao(t,) - 2nsgn[Ag(t,)], [Ap(t,)|> 7 n=12,..,

Ax(tn)=:‘—fce(tn), n=0,12,.., (15)

where ¢ and 0 are the wrapped and the unwrapped phase, respectively.

Now consider the case R>]/\/§. In this case, R, will be equal to R only
for the values of  that satisfy the condition of (11). However, as will be shown

below, the displacement can also be determined to sufficient accuracy using the
root R, as the reflection coefficient magnitude. It follows from the condition of

(11) that the root R, will be extraneous if sin(y +/4)< —1/+/2 R . In terms of the
wrapped phase ¢, this condition becomes

7T .1 n .1
T-l— arcsiN——< @ <— —arCSIN———

V2R V2R’

whence it follows that the wrapped phase that corresponds to the condition
sin(y +n/4) < —1//2 R lies in the third quadrant.

Let us find the phase error that is introduced when the extraneous root R,,; is
used as the reflection coefficient magnitude. In this case, Egs. (4) and (5) will give

the apparent values COSy 4, = (al - Rgxt )/ZRext and siny,, = (32 ~-R%, )/ZRext ,
which on substitution into Eq. (12) will give the apparent wrapped phase @, . The
final expression for the apparent wrapped phase is

1+ Rcoso i

= arctan
Pap 1+ Rsing

The use of the apparent wrapped phase @,, instead of the actual wrapped
phase ¢ introduces the phase error A@g (9, R)=¢4 —¢. The function
A@g, (9, R) possesses the following properties:

. . . 5r
— is antisymmetric in ¢ about (p=T;
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— becomes zero at (p—%ﬂarcsini Q= on and (p—ﬁ—arcsinL
4 V2R’ 4" 4 V2R’
— at a fixed ¢, increases in magnitude with R;

and a

V2(1+ R?)
3R

. . - 3 .
—ata fixed R, has a negative minimum at ¢, = Tn+ arcsin

i . 7 20+ R? . . .
positive maximum at ¢, =Tn—arcsm%, which are equal in magnitude

by virtue of the antisymmetry of the function.
It follows from these properties that the greatest possible phase error A®g, max

is reached at R =1 and is equal to

V2+1 \/_?m

+arcsm
J2-1 3 4

As can be seen from the algorithm of (12) — (15), the displacement determina-
tion error is governed by the phase error only at the initial and the current meas-
urement point because the errors at the intermediate points cancel one another.
Because of this, the greatest possible displacement determination error Axg, max
will be reached at R=1 in the case where the initial measurement point corre-
sponds to one extremum of the function A, () and the current measurement

point corresponds to the other. As follows from the aforesaid, this error will be

A
AXermax = ﬁ 2AQermax = 0.044M,. (16)

AQgrmax = arctan

As can be seen from Eq. (16), the greatest possible error Axg, ma 1S about
4.4 % of the free-space operating wavelength i, (notice that this is the worst-case

error, which occurs when the reflection coefficient magnitude is equal to unity, the
initial measurement point corresponds to one extremum of the function A, (¢),

and the current measurement point corresponds to the other). So the proposed dis-
placement measurement method, in which the reflection coefficient magnitude is
taken to be equal to the smaller positive root of Eq. (6), allows the displacement to
be determined to sufficient accuracy at any value of the reflection coefficient mag-
nitude.

A technique that allows one to verify this method for a moving target without
recourse to complex photorecording equipment is described in [17]. This tech-
nique is based on using a target put in motion by a crank mechanism as shown in
Fig. 2.

Incident
electromagnetic Target ¥
wave :

r(
\Pcr

Reflected
electromagnetic
wave

Fig. 2
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As can be seen from Fig. 2, the displacement Ax of the target at time t relative
to its initial positionatt=0is

AX(t) = OA(@4r0) — OAlp,: (t)], (17)

OA(9cr) = \/Lir - Rgr sin? @cr — Rer COS Qg (18)
2nt

Por(6)=0cr0 + - (19)

where ¢ is the crank angle, ¢ is the crank angle at t = 0, OA is the distance
from the rotation center to the end of the crank arm, L, is the crank arm length, Ry
is the crank radius, and T is the rotation period.

As can be seen from Egs. (17) to (19), the displacement is a periodical time
function of period T that reaches one minimum and one maximum over a period.
So the crank rotation period may be determined from the measured dependence
AX(t) as the distance along the abscissa axis between two adjacent minima or two
adjacent maxima, and j o may be determined from the measured dependence Ax(t)
as follows

27Tt1
=——= 20
Pero T (20)

where t; is the time at which the measured dependence Ax(t) shows its first maxi-
mum.

Given T and ty, the actual target displacement can be calculated from Eqgs. (17)
to (20) and compared with the measured one. However, T and t; can be determined
from the measured time dependence of the displacement only approximately. Be-
cause of this, the displacement measurement error, i. e. the difference of the meas-
ured displacement and the actual one, may be found by the following algorithm.

1. From the measured time dependence of the target displacement AXx(t), esti-
mate the crank rotation period T and the time t; at which the measured dependence
AX(t) shows its first maximum (in the following, the estimated values of T and the
time t; will be denoted as Ty, and t;4,, respectively).

2. Vary T and t; with a specified step on the intervals 0.97,, < T <1.1T,, and

ap =
0.9t <t <Lty .

3. For each pair (T, ty), calculate the target displacement at each time point
from Egs. (17) to (20).

4. For each time point, calculate the displacement measurement error Axe as
the difference of the measured displacement Ax(t) and the calculated displacement
AX(1).

5. Find the maximum value |AXe|max OF the displacement error magnitude for
the given pair (T, ty).

6. Find the pair (T, t;) such that |AXe|max iS @ minimum and take these values
of T and t; as the actual values T, and ti, Of the crank rotation period T and the
time t;.

7. For T=T, and t; =ti,y, Calculate the target displacement at each time
point from Egs. (17) to (20).

8. Run Step 4 to find the actual displacement measurement error Axe.
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In [17], the two-probe displacement measurement method was verified by the
above algorithm using a target (a brass disc or a brass square) put into a reciprocal
motion by an electrically driven crank mechanism.

The measuring setup comprised a microwave oscillator, a circulator with a
dummy load, a waveguide section with two probes installed therein and two semi-
conductor detectors connected to the probes, a horn antenna mounted at the end of
the waveguide section, two amplifiers, an analog-to-digital converter, and a per-
sonal computer. A schematic of the setup is shown in Fig. 3.

Waveguide Horn
Circulator with a dummy section antenma
load _—— A
Microwave oscillator i @ > ;Probe 1 Frobe 2| __‘,:\
D Detector 1 & KX Detecior 2
Amplifier
| e e<p———
Personal o Analog-to-digital Detector 1 current
computer comerter . '-C'j ( .
'm@]j_ﬁgr Detector 2 current I,

Fig. 3

The experiments were conducted at different values of the target double am-
plitude equal to twice the crank radius and the minimum distance between the an-
tenna and the target. In all the cases, the free-space operating wavelength was
3 cm, with corresponds to an operating frequency of 10 GHz.

In Experiment 1, the target was a brass disc of diameter 128 mm, the target
double amplitude was 15 cm, and the minimum distance between the antenna and
the target was 100 cm. In Experiment 2, the target was the same as in Experiment
1, the target double amplitude was 10 cm, and the minimum distance between the
antenna and the target was 15 cm. In Experiment 3, the target was a 70x70 mm
brass square, the target double amplitude was 10 cm, and the minimum distance
between the antenna and the target was 5 cm.

Figs. 4 to 6 show the target displacement Ax measured by the method pro-
posed in [12, 13] and the actual target displacement Axy found by the algorithm
described above for Experiments 1, 2, and 3, respectively. As can be seen from the
figures, the target vibration period is about 0.5 sec, i. e. the vibration frequency is
about 2 Hz. It can also be seen that the curves of the measured and the actual dis-
placement coincide to within the line thickness. The peak-to-peak amplitude was
determined to an accuracy of 0.7 mm in Experiment 1, 1.1 mm in Experiment 2,
and 0.2 mm in Experiment 3.

Figs. 7 to 9 show the displacement measurement error Axe equal to the differ-
ence of the measured displacement Ax and the actual displacement Ax,y versus the
time and the root R, of Eg. (6) (the measured reflection coefficient) versus the tar-
get displacement Ax, from the position closest to the antenna for Experiments 1, 2,
and 3, respectively.
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The maximum and the average error in the determination of the instantaneous
relative displacement was 2.9 mm and 0.8 mm in Experiment 1, 2.2 mm and
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1.0 mm in Experiment 2, and 3.3 mm and 1.1 mm in Experiment 3. In Experiments
1 and 2, the measured reflection coefficient varied between 0.04 and 0.066 and

between 0.12 and 0.58, respectively, i. e. it was less than ]/\/5 ~ 0.707. Because of

this, in those experiments the root R, gave the actual reflection coefficient, and
thus the error was due to other factors, such as deviation of the reflected wave
from the plane waveform, reflections from the antenna, noise, etc. In Experiment
3, the measured reflection coefficient varied between 0.2 and 0.76, i. e. at some of
the measurement points the root R, might be extraneous. However, as can be seen
from the data given above, this did not contribute much to the error in comparison
with Experiments 1 and 2. As can be seen from Figs. 6 and 9 (Experiment 3), the
two-probe method described above performs well for a minimum antenna—target
distance of 5 cm too, while the standing-wave radar proposed in [18] fails to oper-
ate at distances less than 14 cm due to positional interference between the target
and the antenna.

The above-described two-probe implementation of microwave interferometry
may also be applied to determining the complex reflection coefficient, whose
measurements are widely used in material characterization. To measure the com-
plex reflection coefficient over a frequency range, this implementation should be
generalized to the case of an arbitrary interporbe distance. Such a generalization is
described in [19, 20]. A measurement schematic is shown in Fig. 10.
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Cireulator with = . & ‘s:cﬁou £ .
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Fig. 10

In this case, Eq. (1) remains as before, while Egs. (2) and (3) become

J,=1+R2+2Rsin(y—p), p==3 1],
2| 7g

Al
VY= s + Orer (21)

Ay
where | is the interprobe distance, L is the distance between the specimen and
probe 1, and R and ¢, are the magnitude and the phase of the complex reflection
coefficient of the specimen).
The expression of (4) for cosy remains as before, while the expression of (5)

for siny becomes
_a,+a;sinp— R%(L+sinp)

siny = . 22
v 2Rcosp (22)
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Given R, the phase ¢, Oof the complex reflection coefficient may be found
from Eqgs. (4), (12), (21), and (22) as follows

4l
brer ZQ_T+ 2nn ,
g

where ¢ is the wrapped phase given by Eq. (12), and the integer n is chosen such
that the phase ¢,.; lies between zero and 2.

From Egs. (4) and (22) we get the following biguadratic equation in R

al +ajs +2aa,sinp B

Y :
R™-R‘la; +a, +2(1-sinB)]+ 2(1+sinB)

0.

An analysis similar to that described above shows that the reflection coeffi-
cient magnitude is given by the smaller positive root of this equation if the follow-
ing conditions are satisfied:

I<hy/8, (23)

0<ep<m or 3n/2<p<2rn. (24)

Because of this, the specimen must be positioned so that the wrapped phase
given by Eq. (12) satisfies the condition of (24), and for measurements over a fre-
quency range the interprobe distance must be such that the condition of (23) is sat-
isfied at the shortest wavelength of that frequency range.

So the proposed probe implementation of microwave interferometry allows
one to measure both the displacement of a mechanical object and the complex re-
flection coefficient of a specimen using as few as two probes. Theoretically, the
displacement is determined exactly for reflection coefficient magnitudes no greater
than the inverse of the square root of two and to a worst-case accuracy of about
4.4 % of the operating wavelength in the general case. This implementation also
allows one to determine the complex reflection coefficient of the horn antenna at
the end of the probe waveguide section, which may be then accounted for to re-
duce the displacement measurement error in cases where the reflection coefficients
of the target and the horn antenna are comparable. The results presented in this
paper may be used in the development of microwave displacement sensors and
vector reflectometers.
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